--- title: Gemini --- To use Gemini embedding models, set the `GOOGLE_API_KEY` environment variables. You can obtain the Gemini API key from [here](https://aistudio.google.com/app/apikey). ### Usage ```python import os from mem0 import Memory os.environ["GOOGLE_API_KEY"] = "key" os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM config = { "embedder": { "provider": "gemini", "config": { "model": "models/text-embedding-004", } } } m = Memory.from_config(config) messages = [ {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"}, {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."}, {"role": "user", "content": "I’m not a big fan of thriller movies but I love sci-fi movies."}, {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."} ] m.add(messages, user_id="john") ``` ### Config Here are the parameters available for configuring Gemini embedder: | Parameter | Description | Default Value | | --- | --- | --- | | `model` | The name of the embedding model to use | `models/text-embedding-004` | | `embedding_dims` | Dimensions of the embedding model (output_dimensionality will be considered as embedding_dims, so please set embedding_dims accordingly) | `768` | | `api_key` | The Gemini API key | `None` |