import json import os from typing import Dict, List, Optional from openai import AzureOpenAI from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.base import LLMBase from mem0.memory.utils import extract_json class AzureOpenAILLM(LLMBase): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config) # Model name should match the custom deployment name chosen for it. if not self.config.model: self.config.model = "gpt-4o" api_key = self.config.azure_kwargs.api_key or os.getenv("LLM_AZURE_OPENAI_API_KEY") azure_deployment = self.config.azure_kwargs.azure_deployment or os.getenv("LLM_AZURE_DEPLOYMENT") azure_endpoint = self.config.azure_kwargs.azure_endpoint or os.getenv("LLM_AZURE_ENDPOINT") api_version = self.config.azure_kwargs.api_version or os.getenv("LLM_AZURE_API_VERSION") default_headers = self.config.azure_kwargs.default_headers self.client = AzureOpenAI( azure_deployment=azure_deployment, azure_endpoint=azure_endpoint, api_version=api_version, api_key=api_key, http_client=self.config.http_client, default_headers=default_headers, ) def _parse_response(self, response, tools): """ Process the response based on whether tools are used or not. Args: response: The raw response from API. tools: The list of tools provided in the request. Returns: str or dict: The processed response. """ if tools: processed_response = { "content": response.choices[0].message.content, "tool_calls": [], } if response.choices[0].message.tool_calls: for tool_call in response.choices[0].message.tool_calls: processed_response["tool_calls"].append( { "name": tool_call.function.name, "arguments": json.loads(extract_json(tool_call.function.arguments)), } ) return processed_response else: return response.choices[0].message.content def generate_response( self, messages: List[Dict[str, str]], response_format=None, tools: Optional[List[Dict]] = None, tool_choice: str = "auto", ): """ Generate a response based on the given messages using Azure OpenAI. Args: messages (list): List of message dicts containing 'role' and 'content'. response_format (str or object, optional): Format of the response. Defaults to "text". tools (list, optional): List of tools that the model can call. Defaults to None. tool_choice (str, optional): Tool choice method. Defaults to "auto". Returns: str: The generated response. """ common_params = { "model": self.config.model, "messages": messages, } if self.config.model in {"o3-mini", "o1-preview", "o1"}: params = common_params else: params = { **common_params, "temperature": self.config.temperature, "max_tokens": self.config.max_tokens, "top_p": self.config.top_p, } if response_format: params["response_format"] = response_format if tools: # TODO: Remove tools if no issues found with new memory addition logic params["tools"] = tools params["tool_choice"] = tool_choice response = self.client.chat.completions.create(**params) return self._parse_response(response, tools)