--- title: Hugging Face --- You can use embedding models from Huggingface to run Mem0 locally. ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM config = { "embedder": { "provider": "huggingface", "config": { "model": "multi-qa-MiniLM-L6-cos-v1" } } } m = Memory.from_config(config) messages = [ {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"}, {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."}, {"role": "user", "content": "I’m not a big fan of thriller movies but I love sci-fi movies."}, {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."} ] m.add(messages, user_id="john") ``` ### Config Here are the parameters available for configuring Huggingface embedder: | Parameter | Description | Default Value | | --- | --- | --- | | `model` | The name of the model to use | `multi-qa-MiniLM-L6-cos-v1` | | `embedding_dims` | Dimensions of the embedding model | `selected_model_dimensions` | | `model_kwargs` | Additional arguments for the model | `None` |