import logging from typing import Any, Dict, List, Optional try: from opensearchpy import OpenSearch from opensearchpy.helpers import bulk except ImportError: raise ImportError("OpenSearch requires extra dependencies. Install with `pip install opensearch-py`") from None from pydantic import BaseModel from mem0.configs.vector_stores.opensearch import OpenSearchConfig from mem0.vector_stores.base import VectorStoreBase logger = logging.getLogger(__name__) class OutputData(BaseModel): id: str score: float payload: Dict class OpenSearchDB(VectorStoreBase): def __init__(self, **kwargs): config = OpenSearchConfig(**kwargs) # Initialize OpenSearch client self.client = OpenSearch( hosts=[{"host": config.host, "port": config.port or 9200}], http_auth=(config.user, config.password) if (config.user and config.password) else None, use_ssl=config.use_ssl, verify_certs=config.verify_certs, ) self.collection_name = config.collection_name self.vector_dim = config.embedding_model_dims # Create index only if auto_create_index is True if config.auto_create_index: self.create_index() def create_index(self) -> None: """Create OpenSearch index with proper mappings if it doesn't exist.""" index_settings = { # ToDo change replicas to 1 "settings": { "index": {"number_of_replicas": 1, "number_of_shards": 5, "refresh_interval": "1s", "knn": True} }, "mappings": { "properties": { "text": {"type": "text"}, "vector": {"type": "knn_vector", "dimension": self.vector_dim}, "metadata": {"type": "object", "properties": {"user_id": {"type": "keyword"}}}, } }, } if not self.client.indices.exists(index=self.collection_name): self.client.indices.create(index=self.collection_name, body=index_settings) logger.info(f"Created index {self.collection_name}") else: logger.info(f"Index {self.collection_name} already exists") def create_col(self, name: str, vector_size: int) -> None: """Create a new collection (index in OpenSearch).""" index_settings = { "mappings": { "properties": { "vector": { "type": "knn_vector", "dimension": vector_size, "method": {"engine": "lucene", "name": "hnsw", "space_type": "cosinesimil"}, }, "payload": {"type": "object"}, "id": {"type": "keyword"}, } } } if not self.client.indices.exists(index=name): self.client.indices.create(index=name, body=index_settings) logger.info(f"Created index {name}") def insert( self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None ) -> List[OutputData]: """Insert vectors into the index.""" if not ids: ids = [str(i) for i in range(len(vectors))] if payloads is None: payloads = [{} for _ in range(len(vectors))] actions = [] for i, (vec, id_) in enumerate(zip(vectors, ids)): action = { "_index": self.collection_name, "_id": id_, "_source": { "vector": vec, "metadata": payloads[i], # Store metadata in the metadata field }, } actions.append(action) bulk(self.client, actions) results = [] for i, id_ in enumerate(ids): results.append(OutputData(id=id_, score=1.0, payload=payloads[i])) return results def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]: """Search for similar vectors using OpenSearch k-NN search with pre-filtering.""" search_query = { "size": limit, "query": { "knn": { "vector": { "vector": query, "k": limit, } } }, } if filters: filter_conditions = [{"term": {f"metadata.{key}": value}} for key, value in filters.items()] search_query["query"]["knn"]["vector"]["filter"] = {"bool": {"filter": filter_conditions}} response = self.client.search(index=self.collection_name, body=search_query) results = [ OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("metadata", {})) for hit in response["hits"]["hits"] ] return results def delete(self, vector_id: str) -> None: """Delete a vector by ID.""" self.client.delete(index=self.collection_name, id=vector_id) def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None: """Update a vector and its payload.""" doc = {} if vector is not None: doc["vector"] = vector if payload is not None: doc["metadata"] = payload self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc}) def get(self, vector_id: str) -> Optional[OutputData]: """Retrieve a vector by ID.""" try: response = self.client.get(index=self.collection_name, id=vector_id) return OutputData(id=response["_id"], score=1.0, payload=response["_source"].get("metadata", {})) except Exception as e: logger.error(f"Error retrieving vector {vector_id}: {e}") return None def list_cols(self) -> List[str]: """List all collections (indices).""" return list(self.client.indices.get_alias().keys()) def delete_col(self) -> None: """Delete a collection (index).""" self.client.indices.delete(index=self.collection_name) def col_info(self, name: str) -> Any: """Get information about a collection (index).""" return self.client.indices.get(index=name) def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]: """List all memories.""" query = {"query": {"match_all": {}}} if filters: query["query"] = { "bool": {"must": [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]} } if limit: query["size"] = limit response = self.client.search(index=self.collection_name, body=query) return [ [ OutputData(id=hit["_id"], score=1.0, payload=hit["_source"].get("metadata", {})) for hit in response["hits"]["hits"] ] ]