--- title: AWS Bedrock and AOSS --- This example demonstrates how to configure and use the `mem0ai` SDK with **AWS Bedrock** and **OpenSearch Service (AOSS)** for persistent memory capabilities in Python. ## Installation Install the required dependencies: ```bash pip install mem0ai boto3 opensearch-py ``` ## Environment Setup Set your AWS environment variables: ```python import os # Set these in your environment or notebook os.environ['AWS_REGION'] = 'us-west-2' os.environ['AWS_ACCESS_KEY_ID'] = 'AK00000000000000000' os.environ['AWS_SECRET_ACCESS_KEY'] = 'AS00000000000000000' # Confirm they are set print(os.environ['AWS_REGION']) print(os.environ['AWS_ACCESS_KEY_ID']) print(os.environ['AWS_SECRET_ACCESS_KEY']) ``` ## Configuration and Usage This sets up Mem0 with AWS Bedrock for embeddings and LLM, and OpenSearch as the vector store. ```python import boto3 from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth from mem0.memory.main import Memory region = 'us-west-2' service = 'aoss' credentials = boto3.Session().get_credentials() auth = AWSV4SignerAuth(credentials, region, service) config = { "embedder": { "provider": "aws_bedrock", "config": { "model": "amazon.titan-embed-text-v2:0" } }, "llm": { "provider": "aws_bedrock", "config": { "model": "anthropic.claude-3-5-haiku-20241022-v1:0", "temperature": 0.1, "max_tokens": 2000 } }, "vector_store": { "provider": "opensearch", "config": { "collection_name": "mem0", "host": "your-opensearch-domain.us-west-2.es.amazonaws.com", "port": 443, "http_auth": auth, "embedding_model_dims": 1024, "connection_class": RequestsHttpConnection, "pool_maxsize": 20, "use_ssl": True, "verify_certs": True } } } # Initialize memory system m = Memory.from_config(config) ``` ## Usage #### Add a memory: ```python messages = [ {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"}, {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."}, {"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."}, {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."} ] # Store inferred memories (default behavior) result = m.add(messages, user_id="alice", metadata={"category": "movie_recommendations"}) ``` #### Search a memory: ```python relevant_memories = m.search(query, user_id="alice") ``` #### Get all memories: ```python all_memories = m.get_all(user_id="alice") ``` #### Get a specific memory: ```python memory = m.get(memory_id) ``` --- ## Conclusion With Mem0 and AWS services like Bedrock and OpenSearch, you can build intelligent AI companions that remember, adapt, and personalize their responses over time. This makes them ideal for long-term assistants, tutors, or support bots with persistent memory and natural conversation abilities.