from typing import Dict, List, Optional try: from ollama import Client except ImportError: raise ImportError( "The 'ollama' library is required. Please install it using 'pip install ollama'." ) from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.base import LLMBase class OllamaLLM(LLMBase): """ A class for interacting with Ollama's language models using the specified configuration. """ def __init__(self, config: Optional[BaseLlmConfig] = None): """ Initializes the OllamaLLM instance with the given configuration. Args: config (Optional[BaseLlmConfig]): Configuration settings for the language model. """ super().__init__(config) if not self.config.model: self.config.model = "llama3.1:70b" self.client = Client(host=self.config.ollama_base_url) self._ensure_model_exists() def _ensure_model_exists(self): """ Ensures the specified model exists locally. If not, pulls it from Ollama. """ local_models = self.client.list()["models"] if not any(model.get("name") == self.config.model for model in local_models): self.client.pull(self.config.model) def generate_response( self, messages: List[Dict[str, str]], response_format: Optional[str] = None, ) -> str: """ Generates a response using Ollama based on the provided messages. Args: messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key. response_format (Optional[str]): The desired format of the response. Defaults to None. Returns: str: The generated response from the model. """ params = { "model": self.config.model, "messages": messages, "options": { "temperature": self.config.temperature, "num_predict": self.config.max_tokens, "top_p": self.config.top_p, }, } if response_format: params["format"] = "json" response = self.client.chat(**params) return response["message"]["content"]