import os from typing import Dict, List, Optional try: import anthropic except ImportError: raise ImportError( "The 'anthropic' library is required. Please install it using 'pip install anthropic'." ) from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.base import LLMBase class AnthropicLLM(LLMBase): """ A class for interacting with Anthropic's Claude models using the specified configuration. """ def __init__(self, config: Optional[BaseLlmConfig] = None): """ Initializes the AnthropicLLM instance with the given configuration. Args: config (Optional[BaseLlmConfig]): Configuration settings for the language model. """ super().__init__(config) if not self.config.model: self.config.model = "claude-3-5-sonnet-20240620" api_key = self.config.api_key or os.getenv("ANTHROPIC_API_KEY") self.client = anthropic.Anthropic(api_key=api_key) def generate_response( self, messages: List[Dict[str, str]], ) -> str: """ Generates a response using Anthropic's Claude model based on the provided messages. Args: messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key. Returns: str: The generated response from the model. """ # Extract system message separately system_message = "" filtered_messages = [] for message in messages: if message["role"] == "system": system_message = message["content"] else: filtered_messages.append(message) params = { "model": self.config.model, "messages": filtered_messages, "system": system_message, "temperature": self.config.temperature, "max_tokens": self.config.max_tokens, "top_p": self.config.top_p, } response = self.client.messages.create(**params) return response.content[0].text