from typing import Literal, Optional from openai import OpenAI from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase class LMStudioEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) self.config.model = self.config.model or "nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf" self.config.embedding_dims = self.config.embedding_dims or 1536 self.config.api_key = self.config.api_key or "lm-studio" self.client = OpenAI(base_url=self.config.lmstudio_base_url, api_key=self.config.api_key) def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using LM Studio. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ text = text.replace("\n", " ") return self.client.embeddings.create(input=[text], model=self.config.model).data[0].embedding