from typing import Literal, Optional from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase try: from langchain.embeddings.base import Embeddings except ImportError: raise ImportError("langchain is not installed. Please install it using `pip install langchain`") class LangchainEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) if self.config.model is None: raise ValueError("`model` parameter is required") if not isinstance(self.config.model, Embeddings): raise ValueError("`model` must be an instance of Embeddings") self.langchain_model = self.config.model def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using Langchain. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ return self.langchain_model.embed_query(text)