import logging from typing import Literal, Optional from openai import OpenAI from sentence_transformers import SentenceTransformer from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase logging.getLogger("transformers").setLevel(logging.WARNING) logging.getLogger("sentence_transformers").setLevel(logging.WARNING) logging.getLogger("huggingface_hub").setLevel(logging.WARNING) class HuggingFaceEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) if config.huggingface_base_url: self.client = OpenAI(base_url=config.huggingface_base_url) else: self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1" self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs) self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension() def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using Hugging Face. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ if self.config.huggingface_base_url: return self.client.embeddings.create(input=text, model="tei").data[0].embedding else: return self.model.encode(text, convert_to_numpy=True).tolist()