import os from typing import Literal, Optional from google import genai from google.genai import types from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase class GoogleGenAIEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) self.config.model = self.config.model or "models/text-embedding-004" self.config.embedding_dims = self.config.embedding_dims or self.config.output_dimensionality or 768 api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY") self.client = genai.Client(api_key=api_key) def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using Google Generative AI. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ text = text.replace("\n", " ") # Create config for embedding parameters config = types.EmbedContentConfig(output_dimensionality=self.config.embedding_dims) # Call the embed_content method with the correct parameters response = self.client.models.embed_content(model=self.config.model, contents=text, config=config) return response.embeddings[0].values