import os from typing import Any, Dict, Optional from pydantic import BaseModel, Field, model_validator class PineconeConfig(BaseModel): """Configuration for Pinecone vector database.""" collection_name: str = Field("mem0", description="Name of the index/collection") embedding_model_dims: int = Field(1536, description="Dimensions of the embedding model") client: Optional[Any] = Field(None, description="Existing Pinecone client instance") api_key: Optional[str] = Field(None, description="API key for Pinecone") environment: Optional[str] = Field(None, description="Pinecone environment") serverless_config: Optional[Dict[str, Any]] = Field(None, description="Configuration for serverless deployment") pod_config: Optional[Dict[str, Any]] = Field(None, description="Configuration for pod-based deployment") hybrid_search: bool = Field(False, description="Whether to enable hybrid search") metric: str = Field("cosine", description="Distance metric for vector similarity") batch_size: int = Field(100, description="Batch size for operations") extra_params: Optional[Dict[str, Any]] = Field(None, description="Additional parameters for Pinecone client") @model_validator(mode="before") @classmethod def check_api_key_or_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: api_key, client = values.get("api_key"), values.get("client") if not api_key and not client and "PINECONE_API_KEY" not in os.environ: raise ValueError( "Either 'api_key' or 'client' must be provided, or PINECONE_API_KEY environment variable must be set." ) return values @model_validator(mode="before") @classmethod def check_pod_or_serverless(cls, values: Dict[str, Any]) -> Dict[str, Any]: pod_config, serverless_config = values.get("pod_config"), values.get("serverless_config") if pod_config and serverless_config: raise ValueError( "Both 'pod_config' and 'serverless_config' cannot be specified. Choose one deployment option." ) return values @model_validator(mode="before") @classmethod def validate_extra_fields(cls, values: Dict[str, Any]) -> Dict[str, Any]: allowed_fields = set(cls.model_fields.keys()) input_fields = set(values.keys()) extra_fields = input_fields - allowed_fields if extra_fields: raise ValueError( f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}" ) return values model_config = { "arbitrary_types_allowed": True, }