[pgvector](https://github.com/pgvector/pgvector) is open-source vector similarity search for Postgres. After connecting with postgres run `CREATE EXTENSION IF NOT EXISTS vector;` to create the vector extension. ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "sk-xx" config = { "vector_store": { "provider": "pgvector", "config": { "user": "test", "password": "123", "host": "127.0.0.1", "port": "5432", } } } m = Memory.from_config(config) messages = [ {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"}, {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."}, {"role": "user", "content": "I’m not a big fan of thriller movies but I love sci-fi movies."}, {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."} ] m.add(messages, user_id="alice", metadata={"category": "movies"}) ``` ### Config Here's the parameters available for configuring pgvector: | Parameter | Description | Default Value | | --- | --- | --- | | `dbname` | The name of the | `postgres` | | `collection_name` | The name of the collection | `mem0` | | `embedding_model_dims` | Dimensions of the embedding model | `1536` | | `user` | User name to connect to the database | `None` | | `password` | Password to connect to the database | `None` | | `host` | The host where the Postgres server is running | `None` | | `port` | The port where the Postgres server is running | `None` | | `diskann` | Whether to use diskann for vector similarity search (requires pgvectorscale) | `True` | | `hnsw` | Whether to use hnsw for vector similarity search | `False` |