Support async client (#1980)

This commit is contained in:
Dev Khant
2024-10-22 12:42:55 +05:30
committed by GitHub
parent c5d298eec8
commit fbf1d8c372
11 changed files with 213 additions and 58 deletions

View File

@@ -1,5 +1,6 @@
import os
from typing import Optional
import google.generativeai as genai
from mem0.configs.embeddings.base import BaseEmbedderConfig
@@ -9,7 +10,7 @@ from mem0.embeddings.base import EmbeddingBase
class GoogleGenAIEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "models/text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 768
@@ -27,4 +28,4 @@ class GoogleGenAIEmbedding(EmbeddingBase):
"""
text = text.replace("\n", " ")
response = genai.embed_content(model=self.config.model, content=text)
return response['embedding']
return response["embedding"]

View File

@@ -14,7 +14,7 @@ class HuggingFaceEmbedding(EmbeddingBase):
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
def embed(self, text):
"""
@@ -26,4 +26,4 @@ class HuggingFaceEmbedding(EmbeddingBase):
Returns:
list: The embedding vector.
"""
return self.model.encode(text, convert_to_numpy = True).tolist()
return self.model.encode(text, convert_to_numpy=True).tolist()