diff --git a/docs/get-started/quickstart.mdx b/docs/get-started/quickstart.mdx
index da98f532..c531c441 100644
--- a/docs/get-started/quickstart.mdx
+++ b/docs/get-started/quickstart.mdx
@@ -31,41 +31,47 @@ This section gives a quickstart example of using Mistral as the Open source LLM
We are using Mistral hosted at Hugging Face, so will you need a Hugging Face token to run this example. Its *free* and you can create one [here](https://huggingface.co/docs/hub/security-tokens).
-```python quickstart.py
+```python huggingface_demo.py
import os
-# replace this with your HF key
+# Replace this with your HF token
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_xxxx"
from embedchain import App
-app = App.from_config("mistral.yaml")
+
+config = {
+ 'llm': {
+ 'provider': 'huggingface',
+ 'config': {
+ 'model': 'mistralai/Mistral-7B-Instruct-v0.2',
+ 'top_p': 0.5
+ }
+ },
+ 'embedder': {
+ 'provider': 'huggingface',
+ 'config': {
+ 'model': 'sentence-transformers/all-mpnet-base-v2'
+ }
+ }
+}
+app = App.from_config(config=config)
app.add("https://www.forbes.com/profile/elon-musk")
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
app.query("What is the net worth of Elon Musk today?")
# Answer: The net worth of Elon Musk today is $258.7 billion.
```
-```yaml mistral.yaml
-llm:
- provider: huggingface
- config:
- model: 'mistralai/Mistral-7B-Instruct-v0.2'
- top_p: 0.5
-embedder:
- provider: huggingface
- config:
- model: 'sentence-transformers/all-mpnet-base-v2'
-```
## Paid Models
In this section, we will use both LLM and embedding model from OpenAI.
-```python quickstart.py
+```python openai_demo.py
import os
-# replace this with your OpenAI key
+from embedchain import App
+
+# Replace this with your OpenAI key
os.environ["OPENAI_API_KEY"] = "sk-xxxx"
-from embedchain import App
app = App()
app.add("https://www.forbes.com/profile/elon-musk")
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
diff --git a/embedchain/app.py b/embedchain/app.py
index 96766198..6547e36d 100644
--- a/embedchain/app.py
+++ b/embedchain/app.py
@@ -3,21 +3,15 @@ import concurrent.futures
import json
import logging
import os
-import uuid
from typing import Any, Optional, Union
import requests
import yaml
from tqdm import tqdm
-from embedchain.cache import (
- Config,
- ExactMatchEvaluation,
- SearchDistanceEvaluation,
- cache,
- gptcache_data_manager,
- gptcache_pre_function,
-)
+from embedchain.cache import (Config, ExactMatchEvaluation,
+ SearchDistanceEvaluation, cache,
+ gptcache_data_manager, gptcache_pre_function)
from embedchain.client import Client
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig
from embedchain.core.db.database import get_session, init_db, setup_engine
@@ -26,7 +20,8 @@ from embedchain.embedchain import EmbedChain
from embedchain.embedder.base import BaseEmbedder
from embedchain.embedder.openai import OpenAIEmbedder
from embedchain.evaluation.base import BaseMetric
-from embedchain.evaluation.metrics import AnswerRelevance, ContextRelevance, Groundedness
+from embedchain.evaluation.metrics import (AnswerRelevance, ContextRelevance,
+ Groundedness)
from embedchain.factory import EmbedderFactory, LlmFactory, VectorDBFactory
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@@ -106,7 +101,7 @@ class App(EmbedChain):
self.config = config or AppConfig()
self.name = self.config.name
- self.config.id = self.local_id = str(uuid.uuid4()) if self.config.id is None else self.config.id
+ self.config.id = self.local_id = "default-app-id" if self.config.id is None else self.config.id
if id is not None:
# Init client first since user is trying to fetch the pipeline
diff --git a/pyproject.toml b/pyproject.toml
index 8987f60e..8a9546c3 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "embedchain"
-version = "0.1.91"
+version = "0.1.92"
description = "Simplest open source retrieval(RAG) framework"
authors = [
"Taranjeet Singh ",
diff --git a/tests/vectordb/test_qdrant.py b/tests/vectordb/test_qdrant.py
index c12c6848..0f1c6a43 100644
--- a/tests/vectordb/test_qdrant.py
+++ b/tests/vectordb/test_qdrant.py
@@ -29,7 +29,7 @@ class TestQdrantDB(unittest.TestCase):
def test_initialize(self, qdrant_client_mock):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -37,7 +37,7 @@ class TestQdrantDB(unittest.TestCase):
app_config = AppConfig(collect_metrics=False)
App(config=app_config, db=db, embedding_model=embedder)
- self.assertEqual(db.collection_name, "embedchain-store-1526")
+ self.assertEqual(db.collection_name, "embedchain-store-1536")
self.assertEqual(db.client, qdrant_client_mock.return_value)
qdrant_client_mock.return_value.get_collections.assert_called_once()
@@ -47,7 +47,7 @@ class TestQdrantDB(unittest.TestCase):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -67,7 +67,7 @@ class TestQdrantDB(unittest.TestCase):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -80,9 +80,9 @@ class TestQdrantDB(unittest.TestCase):
ids = ["123", "456"]
db.add(documents, metadatas, ids)
qdrant_client_mock.return_value.upsert.assert_called_once_with(
- collection_name="embedchain-store-1526",
+ collection_name="embedchain-store-1536",
points=Batch(
- ids=["def", "ghi"],
+ ids=["abc", "def"],
payloads=[
{
"identifier": "123",
@@ -103,7 +103,7 @@ class TestQdrantDB(unittest.TestCase):
def test_query(self, qdrant_client_mock):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -115,7 +115,7 @@ class TestQdrantDB(unittest.TestCase):
db.query(input_query=["This is a test document."], n_results=1, where={"doc_id": "123"})
qdrant_client_mock.return_value.search.assert_called_once_with(
- collection_name="embedchain-store-1526",
+ collection_name="embedchain-store-1536",
query_filter=models.Filter(
must=[
models.FieldCondition(
@@ -134,7 +134,7 @@ class TestQdrantDB(unittest.TestCase):
def test_count(self, qdrant_client_mock):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -143,13 +143,13 @@ class TestQdrantDB(unittest.TestCase):
App(config=app_config, db=db, embedding_model=embedder)
db.count()
- qdrant_client_mock.return_value.get_collection.assert_called_once_with(collection_name="embedchain-store-1526")
+ qdrant_client_mock.return_value.get_collection.assert_called_once_with(collection_name="embedchain-store-1536")
@patch("embedchain.vectordb.qdrant.QdrantClient")
def test_reset(self, qdrant_client_mock):
# Set the embedder
embedder = BaseEmbedder()
- embedder.set_vector_dimension(1526)
+ embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn)
# Create a Qdrant instance
@@ -159,7 +159,7 @@ class TestQdrantDB(unittest.TestCase):
db.reset()
qdrant_client_mock.return_value.delete_collection.assert_called_once_with(
- collection_name="embedchain-store-1526"
+ collection_name="embedchain-store-1536"
)