Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
242
mem0/vector_stores/qdrant.py
Normal file
242
mem0/vector_stores/qdrant.py
Normal file
@@ -0,0 +1,242 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from qdrant_client import QdrantClient
|
||||
from qdrant_client.models import (
|
||||
Distance,
|
||||
FieldCondition,
|
||||
Filter,
|
||||
MatchValue,
|
||||
PointIdsList,
|
||||
PointStruct,
|
||||
Range,
|
||||
VectorParams,
|
||||
)
|
||||
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
|
||||
class QdrantConfig(BaseModel):
|
||||
host: Optional[str] = Field(None, description="Host address for Qdrant server")
|
||||
port: Optional[int] = Field(None, description="Port for Qdrant server")
|
||||
path: Optional[str] = Field(None, description="Path for local Qdrant database")
|
||||
|
||||
|
||||
class Qdrant(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
client=None,
|
||||
host="localhost",
|
||||
port=6333,
|
||||
path=None,
|
||||
url=None,
|
||||
api_key=None,
|
||||
):
|
||||
"""
|
||||
Initialize the Qdrant vector store.
|
||||
|
||||
Args:
|
||||
client (QdrantClient, optional): Existing Qdrant client instance. Defaults to None.
|
||||
host (str, optional): Host address for Qdrant server. Defaults to "localhost".
|
||||
port (int, optional): Port for Qdrant server. Defaults to 6333.
|
||||
path (str, optional): Path for local Qdrant database. Defaults to None.
|
||||
url (str, optional): Full URL for Qdrant server. Defaults to None.
|
||||
api_key (str, optional): API key for Qdrant server. Defaults to None.
|
||||
"""
|
||||
if client:
|
||||
self.client = client
|
||||
else:
|
||||
params = {}
|
||||
if path:
|
||||
params["path"] = path
|
||||
if api_key:
|
||||
params["api_key"] = api_key
|
||||
if url:
|
||||
params["url"] = url
|
||||
if host and port:
|
||||
params["host"] = host
|
||||
params["port"] = port
|
||||
self.client = QdrantClient(**params)
|
||||
|
||||
def create_col(self, name, vector_size, distance=Distance.COSINE):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_size (int): Size of the vectors to be stored.
|
||||
distance (Distance, optional): Distance metric for vector similarity. Defaults to Distance.COSINE.
|
||||
"""
|
||||
# Skip creating collection if already exists
|
||||
response = self.list_cols()
|
||||
for collection in response.collections:
|
||||
if collection.name == name:
|
||||
logging.debug(f"Collection {name} already exists. Skipping creation.")
|
||||
return
|
||||
|
||||
self.client.create_collection(
|
||||
collection_name=name,
|
||||
vectors_config=VectorParams(size=vector_size, distance=distance),
|
||||
)
|
||||
|
||||
def insert(self, name, vectors, payloads=None, ids=None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vectors (list): List of vectors to insert.
|
||||
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
"""
|
||||
points = [
|
||||
PointStruct(
|
||||
id=idx if ids is None else ids[idx],
|
||||
vector=vector,
|
||||
payload=payloads[idx] if payloads else {},
|
||||
)
|
||||
for idx, vector in enumerate(vectors)
|
||||
]
|
||||
self.client.upsert(collection_name=name, points=points)
|
||||
|
||||
def _create_filter(self, filters):
|
||||
"""
|
||||
Create a Filter object from the provided filters.
|
||||
|
||||
Args:
|
||||
filters (dict): Filters to apply.
|
||||
|
||||
Returns:
|
||||
Filter: The created Filter object.
|
||||
"""
|
||||
conditions = []
|
||||
for key, value in filters.items():
|
||||
if isinstance(value, dict) and "gte" in value and "lte" in value:
|
||||
conditions.append(
|
||||
FieldCondition(
|
||||
key=key, range=Range(gte=value["gte"], lte=value["lte"])
|
||||
)
|
||||
)
|
||||
else:
|
||||
conditions.append(
|
||||
FieldCondition(key=key, match=MatchValue(value=value))
|
||||
)
|
||||
return Filter(must=conditions) if conditions else None
|
||||
|
||||
def search(self, name, query, limit=5, filters=None):
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
query (list): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
list: Search results.
|
||||
"""
|
||||
query_filter = self._create_filter(filters) if filters else None
|
||||
hits = self.client.search(
|
||||
collection_name=name,
|
||||
query_vector=query,
|
||||
query_filter=query_filter,
|
||||
limit=limit,
|
||||
)
|
||||
return hits
|
||||
|
||||
def delete(self, name, vector_id):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to delete.
|
||||
"""
|
||||
self.client.delete(
|
||||
collection_name=name,
|
||||
points_selector=PointIdsList(
|
||||
points=[vector_id],
|
||||
),
|
||||
)
|
||||
|
||||
def update(self, name, vector_id, vector=None, payload=None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to update.
|
||||
vector (list, optional): Updated vector. Defaults to None.
|
||||
payload (dict, optional): Updated payload. Defaults to None.
|
||||
"""
|
||||
point = PointStruct(id=vector_id, vector=vector, payload=payload)
|
||||
self.client.upsert(collection_name=name, points=[point])
|
||||
|
||||
def get(self, name, vector_id):
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
dict: Retrieved vector.
|
||||
"""
|
||||
result = self.client.retrieve(
|
||||
collection_name=name, ids=[vector_id], with_payload=True
|
||||
)
|
||||
return result[0] if result else None
|
||||
|
||||
def list_cols(self):
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
Returns:
|
||||
list: List of collection names.
|
||||
"""
|
||||
return self.client.get_collections()
|
||||
|
||||
def delete_col(self, name):
|
||||
"""
|
||||
Delete a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection to delete.
|
||||
"""
|
||||
self.client.delete_collection(collection_name=name)
|
||||
|
||||
def col_info(self, name):
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
|
||||
Returns:
|
||||
dict: Collection information.
|
||||
"""
|
||||
return self.client.get_collection(collection_name=name)
|
||||
|
||||
def list(self, name, filters=None, limit=100):
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
list: List of vectors.
|
||||
"""
|
||||
query_filter = self._create_filter(filters) if filters else None
|
||||
result = self.client.scroll(
|
||||
collection_name=name,
|
||||
scroll_filter=query_filter,
|
||||
limit=limit,
|
||||
with_payload=True,
|
||||
with_vectors=False,
|
||||
)
|
||||
return result
|
||||
Reference in New Issue
Block a user