Rename embedchain to mem0 and open sourcing code for long term memory (#1474)

Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Taranjeet Singh
2024-07-12 07:51:33 -07:00
committed by GitHub
parent 83e8c97295
commit f842a92e25
665 changed files with 9427 additions and 6592 deletions

View File

View File

@@ -0,0 +1,48 @@
from abc import ABC, abstractmethod
class VectorStoreBase(ABC):
@abstractmethod
def create_col(self, name, vector_size, distance):
"""Create a new collection."""
pass
@abstractmethod
def insert(self, name, vectors, payloads=None, ids=None):
"""Insert vectors into a collection."""
pass
@abstractmethod
def search(self, name, query, limit=5, filters=None):
"""Search for similar vectors."""
pass
@abstractmethod
def delete(self, name, vector_id):
"""Delete a vector by ID."""
pass
@abstractmethod
def update(self, name, vector_id, vector=None, payload=None):
"""Update a vector and its payload."""
pass
@abstractmethod
def get(self, name, vector_id):
"""Retrieve a vector by ID."""
pass
@abstractmethod
def list_cols(self):
"""List all collections."""
pass
@abstractmethod
def delete_col(self, name):
"""Delete a collection."""
pass
@abstractmethod
def col_info(self, name):
"""Get information about a collection."""
pass

View File

@@ -0,0 +1,45 @@
from typing import Optional
from pydantic import BaseModel, Field, field_validator, model_validator
class QdrantConfig(BaseModel):
host: Optional[str] = Field(None, description="Host address for Qdrant server")
port: Optional[int] = Field(None, description="Port for Qdrant server")
path: Optional[str] = Field(None, description="Path for local Qdrant database")
url: Optional[str] = Field(None, description="Full URL for Qdrant server")
api_key: Optional[str] = Field(None, description="API key for Qdrant server")
@model_validator(mode="before")
def check_host_port_or_path(cls, values):
host, port, path, url, api_key = (
values.get("host"),
values.get("port"),
values.get("path"),
values.get("url"),
values.get("api_key"),
)
if not path and not (host and port) and not (url and api_key):
raise ValueError(
"Either 'host' and 'port' or 'url' and 'api_key' or 'path' must be provided."
)
return values
class VectorStoreConfig(BaseModel):
provider: str = Field(
description="Provider of the vector store (e.g., 'qdrant', 'chromadb', 'elasticsearch')",
default="qdrant",
)
config: QdrantConfig = Field(
description="Configuration for the specific vector store",
default=QdrantConfig(path="/tmp/qdrant"),
)
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider == "qdrant":
return QdrantConfig(**v.model_dump())
else:
raise ValueError(f"Unsupported vector store provider: {provider}")

View File

@@ -0,0 +1,242 @@
import logging
from typing import Optional
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client.models import (
Distance,
FieldCondition,
Filter,
MatchValue,
PointIdsList,
PointStruct,
Range,
VectorParams,
)
from mem0.vector_stores.base import VectorStoreBase
class QdrantConfig(BaseModel):
host: Optional[str] = Field(None, description="Host address for Qdrant server")
port: Optional[int] = Field(None, description="Port for Qdrant server")
path: Optional[str] = Field(None, description="Path for local Qdrant database")
class Qdrant(VectorStoreBase):
def __init__(
self,
client=None,
host="localhost",
port=6333,
path=None,
url=None,
api_key=None,
):
"""
Initialize the Qdrant vector store.
Args:
client (QdrantClient, optional): Existing Qdrant client instance. Defaults to None.
host (str, optional): Host address for Qdrant server. Defaults to "localhost".
port (int, optional): Port for Qdrant server. Defaults to 6333.
path (str, optional): Path for local Qdrant database. Defaults to None.
url (str, optional): Full URL for Qdrant server. Defaults to None.
api_key (str, optional): API key for Qdrant server. Defaults to None.
"""
if client:
self.client = client
else:
params = {}
if path:
params["path"] = path
if api_key:
params["api_key"] = api_key
if url:
params["url"] = url
if host and port:
params["host"] = host
params["port"] = port
self.client = QdrantClient(**params)
def create_col(self, name, vector_size, distance=Distance.COSINE):
"""
Create a new collection.
Args:
name (str): Name of the collection.
vector_size (int): Size of the vectors to be stored.
distance (Distance, optional): Distance metric for vector similarity. Defaults to Distance.COSINE.
"""
# Skip creating collection if already exists
response = self.list_cols()
for collection in response.collections:
if collection.name == name:
logging.debug(f"Collection {name} already exists. Skipping creation.")
return
self.client.create_collection(
collection_name=name,
vectors_config=VectorParams(size=vector_size, distance=distance),
)
def insert(self, name, vectors, payloads=None, ids=None):
"""
Insert vectors into a collection.
Args:
name (str): Name of the collection.
vectors (list): List of vectors to insert.
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
"""
points = [
PointStruct(
id=idx if ids is None else ids[idx],
vector=vector,
payload=payloads[idx] if payloads else {},
)
for idx, vector in enumerate(vectors)
]
self.client.upsert(collection_name=name, points=points)
def _create_filter(self, filters):
"""
Create a Filter object from the provided filters.
Args:
filters (dict): Filters to apply.
Returns:
Filter: The created Filter object.
"""
conditions = []
for key, value in filters.items():
if isinstance(value, dict) and "gte" in value and "lte" in value:
conditions.append(
FieldCondition(
key=key, range=Range(gte=value["gte"], lte=value["lte"])
)
)
else:
conditions.append(
FieldCondition(key=key, match=MatchValue(value=value))
)
return Filter(must=conditions) if conditions else None
def search(self, name, query, limit=5, filters=None):
"""
Search for similar vectors.
Args:
name (str): Name of the collection.
query (list): Query vector.
limit (int, optional): Number of results to return. Defaults to 5.
filters (dict, optional): Filters to apply to the search. Defaults to None.
Returns:
list: Search results.
"""
query_filter = self._create_filter(filters) if filters else None
hits = self.client.search(
collection_name=name,
query_vector=query,
query_filter=query_filter,
limit=limit,
)
return hits
def delete(self, name, vector_id):
"""
Delete a vector by ID.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to delete.
"""
self.client.delete(
collection_name=name,
points_selector=PointIdsList(
points=[vector_id],
),
)
def update(self, name, vector_id, vector=None, payload=None):
"""
Update a vector and its payload.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to update.
vector (list, optional): Updated vector. Defaults to None.
payload (dict, optional): Updated payload. Defaults to None.
"""
point = PointStruct(id=vector_id, vector=vector, payload=payload)
self.client.upsert(collection_name=name, points=[point])
def get(self, name, vector_id):
"""
Retrieve a vector by ID.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to retrieve.
Returns:
dict: Retrieved vector.
"""
result = self.client.retrieve(
collection_name=name, ids=[vector_id], with_payload=True
)
return result[0] if result else None
def list_cols(self):
"""
List all collections.
Returns:
list: List of collection names.
"""
return self.client.get_collections()
def delete_col(self, name):
"""
Delete a collection.
Args:
name (str): Name of the collection to delete.
"""
self.client.delete_collection(collection_name=name)
def col_info(self, name):
"""
Get information about a collection.
Args:
name (str): Name of the collection.
Returns:
dict: Collection information.
"""
return self.client.get_collection(collection_name=name)
def list(self, name, filters=None, limit=100):
"""
List all vectors in a collection.
Args:
name (str): Name of the collection.
limit (int, optional): Number of vectors to return. Defaults to 100.
Returns:
list: List of vectors.
"""
query_filter = self._create_filter(filters) if filters else None
result = self.client.scroll(
collection_name=name,
scroll_filter=query_filter,
limit=limit,
with_payload=True,
with_vectors=False,
)
return result