Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
245
embedchain/embedchain/vectordb/zilliz.py
Normal file
245
embedchain/embedchain/vectordb/zilliz.py
Normal file
@@ -0,0 +1,245 @@
|
||||
import logging
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from embedchain.config import ZillizDBConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
try:
|
||||
from pymilvus import (Collection, CollectionSchema, DataType, FieldSchema,
|
||||
MilvusClient, connections, utility)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
|
||||
) from None
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class ZillizVectorDB(BaseVectorDB):
|
||||
"""Base class for vector database."""
|
||||
|
||||
def __init__(self, config: ZillizDBConfig = None):
|
||||
"""Initialize the database. Save the config and client as an attribute.
|
||||
|
||||
:param config: Database configuration class instance.
|
||||
:type config: ZillizDBConfig
|
||||
"""
|
||||
|
||||
if config is None:
|
||||
self.config = ZillizDBConfig()
|
||||
else:
|
||||
self.config = config
|
||||
|
||||
self.client = MilvusClient(
|
||||
uri=self.config.uri,
|
||||
token=self.config.token,
|
||||
)
|
||||
|
||||
self.connection = connections.connect(
|
||||
uri=self.config.uri,
|
||||
token=self.config.token,
|
||||
)
|
||||
|
||||
super().__init__(config=self.config)
|
||||
|
||||
def _initialize(self):
|
||||
"""
|
||||
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
|
||||
|
||||
So it's can't be done in __init__ in one step.
|
||||
"""
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Get or create the database."""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""
|
||||
Get or create a named collection.
|
||||
|
||||
:param name: Name of the collection
|
||||
:type name: str
|
||||
"""
|
||||
if utility.has_collection(name):
|
||||
logger.info(f"[ZillizDB]: found an existing collection {name}, make sure the auto-id is disabled.")
|
||||
self.collection = Collection(name)
|
||||
else:
|
||||
fields = [
|
||||
FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=512),
|
||||
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=2048),
|
||||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=self.embedder.vector_dimension),
|
||||
FieldSchema(name="metadata", dtype=DataType.JSON),
|
||||
]
|
||||
|
||||
schema = CollectionSchema(fields, enable_dynamic_field=True)
|
||||
self.collection = Collection(name=name, schema=schema)
|
||||
|
||||
index = {
|
||||
"index_type": "AUTOINDEX",
|
||||
"metric_type": self.config.metric_type,
|
||||
}
|
||||
self.collection.create_index("embeddings", index)
|
||||
return self.collection
|
||||
|
||||
def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: list[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: dict[str, Any]
|
||||
:param limit: Optional. maximum number of documents
|
||||
:type limit: Optional[int]
|
||||
:return: Existing documents.
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
data_ids = []
|
||||
metadatas = []
|
||||
if self.collection.num_entities == 0 or self.collection.is_empty:
|
||||
return {"ids": data_ids, "metadatas": metadatas}
|
||||
|
||||
filter_ = ""
|
||||
if ids:
|
||||
filter_ = f'id in "{ids}"'
|
||||
|
||||
if where:
|
||||
if filter_:
|
||||
filter_ += " and "
|
||||
filter_ = f"{self._generate_zilliz_filter(where)}"
|
||||
|
||||
results = self.client.query(collection_name=self.config.collection_name, filter=filter_, output_fields=["*"])
|
||||
for res in results:
|
||||
data_ids.append(res.get("id"))
|
||||
metadatas.append(res.get("metadata", {}))
|
||||
|
||||
return {"ids": data_ids, "metadatas": metadatas}
|
||||
|
||||
def add(
|
||||
self,
|
||||
documents: list[str],
|
||||
metadatas: list[object],
|
||||
ids: list[str],
|
||||
**kwargs: Optional[dict[str, any]],
|
||||
):
|
||||
"""Add to database"""
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
|
||||
for id, doc, metadata, embedding in zip(ids, documents, metadatas, embeddings):
|
||||
data = {"id": id, "text": doc, "embeddings": embedding, "metadata": metadata}
|
||||
self.client.insert(collection_name=self.config.collection_name, data=data, **kwargs)
|
||||
|
||||
self.collection.load()
|
||||
self.collection.flush()
|
||||
self.client.flush(self.config.collection_name)
|
||||
|
||||
def query(
|
||||
self,
|
||||
input_query: str,
|
||||
n_results: int,
|
||||
where: dict[str, Any],
|
||||
citations: bool = False,
|
||||
**kwargs: Optional[dict[str, Any]],
|
||||
) -> Union[list[tuple[str, dict]], list[str]]:
|
||||
"""
|
||||
Query contents from vector database based on vector similarity
|
||||
|
||||
:param input_query: query string
|
||||
:type input_query: str
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
:type where: dict[str, Any]
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:param citations: we use citations boolean param to return context along with the answer.
|
||||
:type citations: bool, default is False.
|
||||
:return: The content of the document that matched your query,
|
||||
along with url of the source and doc_id (if citations flag is true)
|
||||
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
|
||||
"""
|
||||
|
||||
if self.collection.is_empty:
|
||||
return []
|
||||
|
||||
output_fields = ["*"]
|
||||
input_query_vector = self.embedder.embedding_fn([input_query])
|
||||
query_vector = input_query_vector[0]
|
||||
|
||||
query_filter = self._generate_zilliz_filter(where)
|
||||
query_result = self.client.search(
|
||||
collection_name=self.config.collection_name,
|
||||
data=[query_vector],
|
||||
filter=query_filter,
|
||||
limit=n_results,
|
||||
output_fields=output_fields,
|
||||
**kwargs,
|
||||
)
|
||||
query_result = query_result[0]
|
||||
contexts = []
|
||||
for query in query_result:
|
||||
data = query["entity"]
|
||||
score = query["distance"]
|
||||
context = data["text"]
|
||||
|
||||
if citations:
|
||||
metadata = data.get("metadata", {})
|
||||
metadata["score"] = score
|
||||
contexts.append(tuple((context, metadata)))
|
||||
else:
|
||||
contexts.append(context)
|
||||
return contexts
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
return self.collection.num_entities
|
||||
|
||||
def reset(self, collection_names: list[str] = None):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
if self.config.collection_name:
|
||||
if collection_names:
|
||||
for collection_name in collection_names:
|
||||
if collection_name in self.client.list_collections():
|
||||
self.client.drop_collection(collection_name=collection_name)
|
||||
else:
|
||||
self.client.drop_collection(collection_name=self.config.collection_name)
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
if not isinstance(name, str):
|
||||
raise TypeError("Collection name must be a string")
|
||||
self.config.collection_name = name
|
||||
|
||||
def _generate_zilliz_filter(self, where: dict[str, str]):
|
||||
operands = []
|
||||
for key, value in where.items():
|
||||
operands.append(f'(metadata["{key}"] == "{value}")')
|
||||
return " and ".join(operands)
|
||||
|
||||
def delete(self, where: dict[str, Any]):
|
||||
"""
|
||||
Delete the embeddings from DB. Zilliz only support deleting with keys.
|
||||
|
||||
|
||||
:param keys: Primary keys of the table entries to delete.
|
||||
:type keys: Union[list, str, int]
|
||||
"""
|
||||
data = self.get(where=where)
|
||||
keys = data.get("ids", [])
|
||||
if keys:
|
||||
self.client.delete(collection_name=self.config.collection_name, pks=keys)
|
||||
Reference in New Issue
Block a user