Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
253
embedchain/embedchain/vectordb/opensearch.py
Normal file
253
embedchain/embedchain/vectordb/opensearch.py
Normal file
@@ -0,0 +1,253 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
from opensearchpy import OpenSearch
|
||||
from opensearchpy.helpers import bulk
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"OpenSearch requires extra dependencies. Install with `pip install --upgrade embedchain[opensearch]`"
|
||||
) from None
|
||||
|
||||
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import OpenSearchVectorSearch
|
||||
|
||||
from embedchain.config import OpenSearchDBConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class OpenSearchDB(BaseVectorDB):
|
||||
"""
|
||||
OpenSearch as vector database
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenSearchDBConfig):
|
||||
"""OpenSearch as vector database.
|
||||
|
||||
:param config: OpenSearch domain config
|
||||
:type config: OpenSearchDBConfig
|
||||
"""
|
||||
if config is None:
|
||||
raise ValueError("OpenSearchDBConfig is required")
|
||||
self.config = config
|
||||
self.batch_size = self.config.batch_size
|
||||
self.client = OpenSearch(
|
||||
hosts=[self.config.opensearch_url],
|
||||
http_auth=self.config.http_auth,
|
||||
**self.config.extra_params,
|
||||
)
|
||||
info = self.client.info()
|
||||
logger.info(f"Connected to {info['version']['distribution']}. Version: {info['version']['number']}")
|
||||
# Remove auth credentials from config after successful connection
|
||||
super().__init__(config=self.config)
|
||||
|
||||
def _initialize(self):
|
||||
logger.info(self.client.info())
|
||||
index_name = self._get_index()
|
||||
if self.client.indices.exists(index=index_name):
|
||||
print(f"Index '{index_name}' already exists.")
|
||||
return
|
||||
|
||||
index_body = {
|
||||
"settings": {"knn": True},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"embeddings": {
|
||||
"type": "knn_vector",
|
||||
"index": False,
|
||||
"dimension": self.config.vector_dimension,
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
self.client.indices.create(index_name, body=index_body)
|
||||
print(self.client.indices.get(index_name))
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(
|
||||
self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None
|
||||
) -> set[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
|
||||
:param ids: _list of doc ids to check for existence
|
||||
:type ids: list[str]
|
||||
:param where: to filter data
|
||||
:type where: dict[str, any]
|
||||
:return: ids
|
||||
:type: set[str]
|
||||
"""
|
||||
query = {}
|
||||
if ids:
|
||||
query["query"] = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
else:
|
||||
query["query"] = {"bool": {"must": []}}
|
||||
|
||||
if where:
|
||||
for key, value in where.items():
|
||||
query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
|
||||
|
||||
# OpenSearch syntax is different from Elasticsearch
|
||||
response = self.client.search(index=self._get_index(), body=query, _source=True, size=limit)
|
||||
docs = response["hits"]["hits"]
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
doc_ids = [doc["_source"]["metadata"]["doc_id"] for doc in docs]
|
||||
|
||||
# Result is modified for compatibility with other vector databases
|
||||
# TODO: Add method in vector database to return result in a standard format
|
||||
result = {"ids": ids, "metadatas": []}
|
||||
|
||||
for doc_id in doc_ids:
|
||||
result["metadatas"].append({"doc_id": doc_id})
|
||||
return result
|
||||
|
||||
def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
|
||||
"""Adds documents to the opensearch index"""
|
||||
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for batch_start in tqdm(range(0, len(documents), self.batch_size), desc="Inserting batches in opensearch"):
|
||||
batch_end = batch_start + self.batch_size
|
||||
batch_documents = documents[batch_start:batch_end]
|
||||
batch_embeddings = embeddings[batch_start:batch_end]
|
||||
|
||||
# Create document entries for bulk upload
|
||||
batch_entries = [
|
||||
{
|
||||
"_index": self._get_index(),
|
||||
"_id": doc_id,
|
||||
"_source": {"text": text, "metadata": metadata, "embeddings": embedding},
|
||||
}
|
||||
for doc_id, text, metadata, embedding in zip(
|
||||
ids[batch_start:batch_end], batch_documents, metadatas[batch_start:batch_end], batch_embeddings
|
||||
)
|
||||
]
|
||||
|
||||
# Perform bulk operation
|
||||
bulk(self.client, batch_entries, **kwargs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
|
||||
# Sleep to avoid rate limiting
|
||||
time.sleep(0.1)
|
||||
|
||||
def query(
|
||||
self,
|
||||
input_query: str,
|
||||
n_results: int,
|
||||
where: dict[str, any],
|
||||
citations: bool = False,
|
||||
**kwargs: Optional[dict[str, Any]],
|
||||
) -> Union[list[tuple[str, dict]], list[str]]:
|
||||
"""
|
||||
query contents from vector database based on vector similarity
|
||||
|
||||
:param input_query: query string
|
||||
:type input_query: str
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: Optional. to filter data
|
||||
:type where: dict[str, any]
|
||||
:param citations: we use citations boolean param to return context along with the answer.
|
||||
:type citations: bool, default is False.
|
||||
:return: The content of the document that matched your query,
|
||||
along with url of the source and doc_id (if citations flag is true)
|
||||
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
|
||||
"""
|
||||
embeddings = OpenAIEmbeddings()
|
||||
docsearch = OpenSearchVectorSearch(
|
||||
index_name=self._get_index(),
|
||||
embedding_function=embeddings,
|
||||
opensearch_url=f"{self.config.opensearch_url}",
|
||||
http_auth=self.config.http_auth,
|
||||
use_ssl=hasattr(self.config, "use_ssl") and self.config.use_ssl,
|
||||
verify_certs=hasattr(self.config, "verify_certs") and self.config.verify_certs,
|
||||
)
|
||||
|
||||
pre_filter = {"match_all": {}} # default
|
||||
if len(where) > 0:
|
||||
pre_filter = {"bool": {"must": []}}
|
||||
for key, value in where.items():
|
||||
pre_filter["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
|
||||
|
||||
docs = docsearch.similarity_search_with_score(
|
||||
input_query,
|
||||
search_type="script_scoring",
|
||||
space_type="cosinesimil",
|
||||
vector_field="embeddings",
|
||||
text_field="text",
|
||||
metadata_field="metadata",
|
||||
pre_filter=pre_filter,
|
||||
k=n_results,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
contexts = []
|
||||
for doc, score in docs:
|
||||
context = doc.page_content
|
||||
if citations:
|
||||
metadata = doc.metadata
|
||||
metadata["score"] = score
|
||||
contexts.append(tuple((context, metadata)))
|
||||
else:
|
||||
contexts.append(context)
|
||||
return contexts
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
if not isinstance(name, str):
|
||||
raise TypeError("Collection name must be a string")
|
||||
self.config.collection_name = name
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
query = {"query": {"match_all": {}}}
|
||||
response = self.client.count(index=self._get_index(), body=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self._get_index()):
|
||||
# delete index in ES
|
||||
self.client.indices.delete(index=self._get_index())
|
||||
|
||||
def delete(self, where):
|
||||
"""Deletes a document from the OpenSearch index"""
|
||||
query = {"query": {"bool": {"must": []}}}
|
||||
for key, value in where.items():
|
||||
query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
|
||||
self.client.delete_by_query(index=self._get_index(), body=query)
|
||||
|
||||
def _get_index(self) -> str:
|
||||
"""Get the OpenSearch index for a collection
|
||||
|
||||
:return: OpenSearch index
|
||||
:rtype: str
|
||||
"""
|
||||
return self.config.collection_name
|
||||
Reference in New Issue
Block a user