Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
89
embedchain/docs/get-started/quickstart.mdx
Normal file
89
embedchain/docs/get-started/quickstart.mdx
Normal file
@@ -0,0 +1,89 @@
|
||||
---
|
||||
title: '⚡ Quickstart'
|
||||
description: '💡 Create an AI app on your own data in a minute'
|
||||
---
|
||||
|
||||
## Installation
|
||||
|
||||
First install the Python package:
|
||||
|
||||
```bash
|
||||
pip install embedchain
|
||||
```
|
||||
|
||||
Once you have installed the package, depending upon your preference you can either use:
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Open Source Models" icon="osi" href="#open-source-models">
|
||||
This includes Open source LLMs like Mistral, Llama, etc.<br/>
|
||||
Free to use, and runs locally on your machine.
|
||||
</Card>
|
||||
<Card title="Paid Models" icon="dollar-sign" href="#paid-models" color="#4A154B">
|
||||
This includes paid LLMs like GPT 4, Claude, etc.<br/>
|
||||
Cost money and are accessible via an API.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Open Source Models
|
||||
|
||||
This section gives a quickstart example of using Mistral as the Open source LLM and Sentence transformers as the Open source embedding model. These models are free and run mostly on your local machine.
|
||||
|
||||
We are using Mistral hosted at Hugging Face, so will you need a Hugging Face token to run this example. Its *free* and you can create one [here](https://huggingface.co/docs/hub/security-tokens).
|
||||
|
||||
<CodeGroup>
|
||||
```python huggingface_demo.py
|
||||
import os
|
||||
# Replace this with your HF token
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_xxxx"
|
||||
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
'llm': {
|
||||
'provider': 'huggingface',
|
||||
'config': {
|
||||
'model': 'mistralai/Mistral-7B-Instruct-v0.2',
|
||||
'top_p': 0.5
|
||||
}
|
||||
},
|
||||
'embedder': {
|
||||
'provider': 'huggingface',
|
||||
'config': {
|
||||
'model': 'sentence-transformers/all-mpnet-base-v2'
|
||||
}
|
||||
}
|
||||
}
|
||||
app = App.from_config(config=config)
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Paid Models
|
||||
|
||||
In this section, we will use both LLM and embedding model from OpenAI.
|
||||
|
||||
```python openai_demo.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# Replace this with your OpenAI key
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxxx"
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
|
||||
# Next Steps
|
||||
|
||||
Now that you have created your first app, you can follow any of the links:
|
||||
|
||||
* [Introduction](/get-started/introduction)
|
||||
* [Customization](/components/introduction)
|
||||
* [Use cases](/use-cases/introduction)
|
||||
* [Deployment](/get-started/deployment)
|
||||
Reference in New Issue
Block a user