Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
109
embedchain/docs/components/vector-databases/pinecone.mdx
Normal file
109
embedchain/docs/components/vector-databases/pinecone.mdx
Normal file
@@ -0,0 +1,109 @@
|
||||
---
|
||||
title: Pinecone
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Install pinecone related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'pinecone-client pinecone-text'
|
||||
```
|
||||
|
||||
In order to use Pinecone as vector database, set the environment variable `PINECONE_API_KEY` which you can find on [Pinecone dashboard](https://app.pinecone.io/).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# Load pinecone configuration from yaml file
|
||||
app = App.from_config(config_path="pod_config.yaml")
|
||||
# Or
|
||||
app = App.from_config(config_path="serverless_config.yaml")
|
||||
```
|
||||
|
||||
```yaml pod_config.yaml
|
||||
vectordb:
|
||||
provider: pinecone
|
||||
config:
|
||||
metric: cosine
|
||||
vector_dimension: 1536
|
||||
index_name: my-pinecone-index
|
||||
pod_config:
|
||||
environment: gcp-starter
|
||||
metadata_config:
|
||||
indexed:
|
||||
- "url"
|
||||
- "hash"
|
||||
```
|
||||
|
||||
```yaml serverless_config.yaml
|
||||
vectordb:
|
||||
provider: pinecone
|
||||
config:
|
||||
metric: cosine
|
||||
vector_dimension: 1536
|
||||
index_name: my-pinecone-index
|
||||
serverless_config:
|
||||
cloud: aws
|
||||
region: us-west-2
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
<br />
|
||||
<Note>
|
||||
You can find more information about Pinecone configuration [here](https://docs.pinecone.io/docs/manage-indexes#create-a-pod-based-index).
|
||||
You can also optionally provide `index_name` as a config param in yaml file to specify the index name. If not provided, the index name will be `{collection_name}-{vector_dimension}`.
|
||||
</Note>
|
||||
|
||||
## Usage
|
||||
|
||||
### Hybrid search
|
||||
|
||||
Here is an example of how you can do hybrid search using Pinecone as a vector database through Embedchain.
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
'app': {
|
||||
"config": {
|
||||
"id": "ec-docs-hybrid-search"
|
||||
}
|
||||
},
|
||||
'vectordb': {
|
||||
'provider': 'pinecone',
|
||||
'config': {
|
||||
'metric': 'dotproduct',
|
||||
'vector_dimension': 1536,
|
||||
'index_name': 'my-index',
|
||||
'serverless_config': {
|
||||
'cloud': 'aws',
|
||||
'region': 'us-west-2'
|
||||
},
|
||||
'hybrid_search': True, # Remember to set this for hybrid search
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Initialize app
|
||||
app = App.from_config(config=config)
|
||||
|
||||
# Add documents
|
||||
app.add("/path/to/file.pdf", data_type="pdf_file", namespace="my-namespace")
|
||||
|
||||
# Query
|
||||
app.query("<YOUR QUESTION HERE>", namespace="my-namespace")
|
||||
|
||||
# Chat
|
||||
app.chat("<YOUR QUESTION HERE>", namespace="my-namespace")
|
||||
```
|
||||
|
||||
Under the hood, Embedchain fetches the relevant chunks from the documents you added by doing hybrid search on the pinecone index.
|
||||
If you have questions on how pinecone hybrid search works, please refer to their [offical documentation here](https://docs.pinecone.io/docs/hybrid-search).
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
Reference in New Issue
Block a user