Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
71
embedchain/docs/components/data-sources/slack.mdx
Normal file
71
embedchain/docs/components/data-sources/slack.mdx
Normal file
@@ -0,0 +1,71 @@
|
||||
---
|
||||
title: '🤖 Slack'
|
||||
---
|
||||
|
||||
## Pre-requisite
|
||||
- Download required packages by running `pip install --upgrade "embedchain[slack]"`.
|
||||
- Configure your slack bot token as environment variable `SLACK_USER_TOKEN`.
|
||||
- Find your user token on your [Slack Account](https://api.slack.com/authentication/token-types)
|
||||
- Make sure your slack user token includes [search](https://api.slack.com/scopes/search:read) scope.
|
||||
|
||||
## Example
|
||||
|
||||
### Get Started
|
||||
|
||||
This will automatically retrieve data from the workspace associated with the user's token.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["SLACK_USER_TOKEN"] = "xoxp-xxx"
|
||||
app = App()
|
||||
|
||||
app.add("in:general", data_type="slack")
|
||||
|
||||
result = app.query("what are the messages in general channel?")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
### Customize your SlackLoader
|
||||
1. Setup the Slack loader by configuring the Slack Webclient.
|
||||
```Python
|
||||
from embedchain.loaders.slack import SlackLoader
|
||||
|
||||
os.environ["SLACK_USER_TOKEN"] = "xoxp-*"
|
||||
|
||||
config = {
|
||||
'base_url': slack_app_url,
|
||||
'headers': web_headers,
|
||||
'team_id': slack_team_id,
|
||||
}
|
||||
|
||||
loader = SlackLoader(config)
|
||||
```
|
||||
|
||||
NOTE: you can also pass the `config` with `base_url`, `headers`, `team_id` to setup your SlackLoader.
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above slack loader
|
||||
```Python
|
||||
import os
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("in:random", data_type="slack", loader=loader)
|
||||
question = "Which bots are available in the slack workspace's random channel?"
|
||||
# Answer: The available bot in the slack workspace's random channel is the Embedchain bot.
|
||||
```
|
||||
|
||||
3. We automatically create a chunker to chunk your slack data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
```Python
|
||||
from embedchain.chunkers.slack import SlackChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
slack_chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
|
||||
slack_chunker = SlackChunker(config=slack_chunker_config)
|
||||
|
||||
app.add(slack_chunker, data_type="slack", loader=loader, chunker=slack_chunker)
|
||||
```
|
||||
Reference in New Issue
Block a user