Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
171
embedchain/docs/api-reference/app/chat.mdx
Normal file
171
embedchain/docs/api-reference/app/chat.mdx
Normal file
@@ -0,0 +1,171 @@
|
||||
---
|
||||
title: '💬 chat'
|
||||
---
|
||||
|
||||
`chat()` method allows you to chat over your data sources using a user-friendly chat API. You can find the signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="input_query" type="str">
|
||||
Question to ask
|
||||
</ParamField>
|
||||
<ParamField path="config" type="BaseLlmConfig" optional>
|
||||
Configure different llm settings such as prompt, temprature, number_documents etc.
|
||||
</ParamField>
|
||||
<ParamField path="dry_run" type="bool" optional>
|
||||
The purpose is to test the prompt structure without actually running LLM inference. Defaults to `False`
|
||||
</ParamField>
|
||||
<ParamField path="where" type="dict" optional>
|
||||
A dictionary of key-value pairs to filter the chunks from the vector database. Defaults to `None`
|
||||
</ParamField>
|
||||
<ParamField path="session_id" type="str" optional>
|
||||
Session ID of the chat. This can be used to maintain chat history of different user sessions. Default value: `default`
|
||||
</ParamField>
|
||||
<ParamField path="citations" type="bool" optional>
|
||||
Return citations along with the LLM answer. Defaults to `False`
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="answer" type="str | tuple">
|
||||
If `citations=False`, return a stringified answer to the question asked. <br />
|
||||
If `citations=True`, returns a tuple with answer and citations respectively.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
### With citations
|
||||
|
||||
If you want to get the answer to question and return both answer and citations, use the following code snippet:
|
||||
|
||||
```python With Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Get relevant answer for your query
|
||||
answer, sources = app.chat("What is the net worth of Elon?", citations=True)
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
|
||||
print(sources)
|
||||
# [
|
||||
# (
|
||||
# 'Elon Musk PROFILEElon MuskCEO, Tesla$247.1B$2.3B (0.96%)Real Time Net Worthas of 12/7/23 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.89,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# '74% of the company, which is now called X.Wealth HistoryHOVER TO REVEAL NET WORTH BY YEARForbes ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.81,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# 'founded in 2002, is worth nearly $150 billion after a $750 million tender offer in June 2023 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.73,
|
||||
# ...
|
||||
# }
|
||||
# )
|
||||
# ]
|
||||
```
|
||||
|
||||
<Note>
|
||||
When `citations=True`, note that the returned `sources` are a list of tuples where each tuple has two elements (in the following order):
|
||||
1. source chunk
|
||||
2. dictionary with metadata about the source chunk
|
||||
- `url`: url of the source
|
||||
- `doc_id`: document id (used for book keeping purposes)
|
||||
- `score`: score of the source chunk with respect to the question
|
||||
- other metadata you might have added at the time of adding the source
|
||||
</Note>
|
||||
|
||||
|
||||
### Without citations
|
||||
|
||||
If you just want to return answers and don't want to return citations, you can use the following example:
|
||||
|
||||
```python Without Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Chat on your data using `.chat()`
|
||||
answer = app.chat("What is the net worth of Elon?")
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
```
|
||||
|
||||
### With session id
|
||||
|
||||
If you want to maintain chat sessions for different users, you can simply pass the `session_id` keyword argument. See the example below:
|
||||
|
||||
```python With session id
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Chat on your data using `.chat()`
|
||||
app.chat("What is the net worth of Elon Musk?", session_id="user1")
|
||||
# 'The net worth of Elon Musk is $250.8 billion.'
|
||||
app.chat("What is the net worth of Bill Gates?", session_id="user2")
|
||||
# "I don't know the current net worth of Bill Gates."
|
||||
app.chat("What was my last question", session_id="user1")
|
||||
# 'Your last question was "What is the net worth of Elon Musk?"'
|
||||
```
|
||||
|
||||
### With custom context window
|
||||
|
||||
If you want to customize the context window that you want to use during chat (default context window is 3 document chunks), you can do using the following code snippet:
|
||||
|
||||
```python with custom chunks size
|
||||
from embedchain import App
|
||||
from embedchain.config import BaseLlmConfig
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
query_config = BaseLlmConfig(number_documents=5)
|
||||
app.chat("What is the net worth of Elon Musk?", config=query_config)
|
||||
```
|
||||
|
||||
### With Mem0 to store chat history
|
||||
|
||||
Mem0 is a cutting-edge long-term memory for LLMs to enable personalization for the GenAI stack. It enables LLMs to remember past interactions and provide more personalized responses.
|
||||
|
||||
Follow these steps to use Mem0 to enable memory for personalization in your apps:
|
||||
- Install the [`mem0`](https://docs.mem0.ai/) package using `pip install memzero`.
|
||||
- Get the api_key from [Mem0 Platform](https://app.mem0.ai/).
|
||||
- Provide api_key in config under `memory`, refer [Configurations](docs/api-reference/advanced/configuration.mdx).
|
||||
|
||||
```python with mem0
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"memory": {
|
||||
"api_key": "m0-xxx",
|
||||
"top_k": 5
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
app.chat("What is the net worth of Elon Musk?")
|
||||
```
|
||||
Reference in New Issue
Block a user