Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
8
embedchain/CITATION.cff
Normal file
8
embedchain/CITATION.cff
Normal file
@@ -0,0 +1,8 @@
|
||||
cff-version: 1.2.0
|
||||
message: "If you use this software, please cite it as below."
|
||||
authors:
|
||||
- family-names: "Singh"
|
||||
given-names: "Taranjeet"
|
||||
title: "Embedchain"
|
||||
date-released: 2023-06-20
|
||||
url: "https://github.com/embedchain/embedchain"
|
||||
78
embedchain/CONTRIBUTING.md
Normal file
78
embedchain/CONTRIBUTING.md
Normal file
@@ -0,0 +1,78 @@
|
||||
# Contributing to embedchain
|
||||
|
||||
Let us make contribution easy, collaborative and fun.
|
||||
|
||||
## Submit your Contribution through PR
|
||||
|
||||
To make a contribution, follow these steps:
|
||||
|
||||
1. Fork and clone this repository
|
||||
2. Do the changes on your fork with dedicated feature branch `feature/f1`
|
||||
3. If you modified the code (new feature or bug-fix), please add tests for it
|
||||
4. Include proper documentation / docstring and examples to run the feature
|
||||
5. Check the linting
|
||||
6. Ensure that all tests pass
|
||||
7. Submit a pull request
|
||||
|
||||
For more details about pull requests, please read [GitHub's guides](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request).
|
||||
|
||||
|
||||
### 📦 Package manager
|
||||
|
||||
We use `poetry` as our package manager. You can install poetry by following the instructions [here](https://python-poetry.org/docs/#installation).
|
||||
|
||||
Please DO NOT use pip or conda to install the dependencies. Instead, use poetry:
|
||||
|
||||
```bash
|
||||
poetry install --all-extras
|
||||
or
|
||||
poetry install --with dev
|
||||
|
||||
#activate
|
||||
|
||||
poetry shell
|
||||
```
|
||||
|
||||
### 📌 Pre-commit
|
||||
|
||||
To ensure our standards, make sure to install pre-commit before starting to contribute.
|
||||
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
### 🧹 Linting
|
||||
|
||||
We use `ruff` to lint our code. You can run the linter by running the following command:
|
||||
|
||||
```bash
|
||||
make lint
|
||||
```
|
||||
|
||||
Make sure that the linter does not report any errors or warnings before submitting a pull request.
|
||||
|
||||
### Code Formatting with `black`
|
||||
|
||||
We use `black` to reformat the code by running the following command:
|
||||
|
||||
```bash
|
||||
make format
|
||||
```
|
||||
|
||||
### 🧪 Testing
|
||||
|
||||
We use `pytest` to test our code. You can run the tests by running the following command:
|
||||
|
||||
```bash
|
||||
poetry run pytest
|
||||
```
|
||||
|
||||
|
||||
Several packages have been removed from Poetry to make the package lighter. Therefore, it is recommended to run `make install_all` to install the remaining packages and ensure all tests pass.
|
||||
|
||||
|
||||
Make sure that all tests pass before submitting a pull request.
|
||||
|
||||
## 🚀 Release Process
|
||||
|
||||
At the moment, the release process is manual. We try to make frequent releases. Usually, we release a new version when we have a new feature or bugfix. A developer with admin rights to the repository will create a new release on GitHub, and then publish the new version to PyPI.
|
||||
201
embedchain/LICENSE
Normal file
201
embedchain/LICENSE
Normal file
@@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [2023] [Taranjeet Singh]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
56
embedchain/Makefile
Normal file
56
embedchain/Makefile
Normal file
@@ -0,0 +1,56 @@
|
||||
# Variables
|
||||
PYTHON := python3
|
||||
PIP := $(PYTHON) -m pip
|
||||
PROJECT_NAME := embedchain
|
||||
|
||||
# Targets
|
||||
.PHONY: install format lint clean test ci_lint ci_test coverage
|
||||
|
||||
install:
|
||||
poetry install
|
||||
|
||||
# TODO: use a more efficient way to install these packages
|
||||
install_all:
|
||||
poetry install --all-extras
|
||||
poetry run pip install pinecone-text pinecone-client langchain-anthropic "unstructured[local-inference, all-docs]" ollama langchain_together==0.1.3 \
|
||||
langchain_cohere==0.1.5 deepgram-sdk==3.2.7 langchain-huggingface psutil clarifai==10.0.1 flask==2.3.3 twilio==8.5.0 fastapi-poe==0.0.16 discord==2.3.2 \
|
||||
slack-sdk==3.21.3 huggingface_hub==0.23.0 gitpython==3.1.38 yt_dlp==2023.11.14 PyGithub==1.59.1 feedparser==6.0.10 newspaper3k==0.2.8 listparser==0.19 \
|
||||
modal==0.56.4329 dropbox==11.36.2 boto3==1.34.20 youtube-transcript-api==0.6.1 pytube==15.0.0 beautifulsoup4==4.12.3
|
||||
|
||||
install_es:
|
||||
poetry install --extras elasticsearch
|
||||
|
||||
install_opensearch:
|
||||
poetry install --extras opensearch
|
||||
|
||||
install_milvus:
|
||||
poetry install --extras milvus
|
||||
|
||||
shell:
|
||||
poetry shell
|
||||
|
||||
py_shell:
|
||||
poetry run python
|
||||
|
||||
format:
|
||||
$(PYTHON) -m black .
|
||||
$(PYTHON) -m isort .
|
||||
|
||||
clean:
|
||||
rm -rf dist build *.egg-info
|
||||
|
||||
lint:
|
||||
poetry run ruff .
|
||||
|
||||
build:
|
||||
poetry build
|
||||
|
||||
publish:
|
||||
poetry publish
|
||||
|
||||
# for example: make test file=tests/test_factory.py
|
||||
test:
|
||||
poetry run pytest $(file)
|
||||
|
||||
coverage:
|
||||
poetry run pytest --cov=$(PROJECT_NAME) --cov-report=xml
|
||||
125
embedchain/README.md
Normal file
125
embedchain/README.md
Normal file
@@ -0,0 +1,125 @@
|
||||
<p align="center">
|
||||
<img src="docs/logo/dark.svg" width="400px" alt="Embedchain Logo">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://pypi.org/project/embedchain/">
|
||||
<img src="https://img.shields.io/pypi/v/embedchain" alt="PyPI">
|
||||
</a>
|
||||
<a href="https://pepy.tech/project/embedchain">
|
||||
<img src="https://static.pepy.tech/badge/embedchain" alt="Downloads">
|
||||
</a>
|
||||
<a href="https://embedchain.ai/slack">
|
||||
<img src="https://img.shields.io/badge/slack-embedchain-brightgreen.svg?logo=slack" alt="Slack">
|
||||
</a>
|
||||
<a href="https://embedchain.ai/discord">
|
||||
<img src="https://dcbadge.vercel.app/api/server/6PzXDgEjG5?style=flat" alt="Discord">
|
||||
</a>
|
||||
<a href="https://twitter.com/embedchain">
|
||||
<img src="https://img.shields.io/twitter/follow/embedchain" alt="Twitter">
|
||||
</a>
|
||||
<a href="https://colab.research.google.com/drive/138lMWhENGeEu7Q1-6lNbNTHGLZXBBz_B?usp=sharing">
|
||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab">
|
||||
</a>
|
||||
<a href="https://codecov.io/gh/embedchain/embedchain">
|
||||
<img src="https://codecov.io/gh/embedchain/embedchain/graph/badge.svg?token=EMRRHZXW1Q" alt="codecov">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<hr />
|
||||
|
||||
## What is Embedchain?
|
||||
|
||||
Embedchain is an Open Source Framework for personalizing LLM responses. It makes it easy to create and deploy personalized AI apps. At its core, Embedchain follows the design principle of being *"Conventional but Configurable"* to serve both software engineers and machine learning engineers.
|
||||
|
||||
Embedchain streamlines the creation of personalized LLM applications, offering a seamless process for managing various types of unstructured data. It efficiently segments data into manageable chunks, generates relevant embeddings, and stores them in a vector database for optimized retrieval. With a suite of diverse APIs, it enables users to extract contextual information, find precise answers, or engage in interactive chat conversations, all tailored to their own data.
|
||||
|
||||
## 🔧 Quick install
|
||||
|
||||
### Python API
|
||||
|
||||
```bash
|
||||
pip install embedchain
|
||||
```
|
||||
|
||||
## ✨ Live demo
|
||||
|
||||
Checkout the [Chat with PDF](https://embedchain.ai/demo/chat-pdf) live demo we created using Embedchain. You can find the source code [here](https://github.com/embedchain/embedchain/tree/main/examples/chat-pdf).
|
||||
|
||||
## 🔍 Usage
|
||||
|
||||
<!-- Demo GIF or Image -->
|
||||
<p align="center">
|
||||
<img src="docs/images/cover.gif" width="900px" alt="Embedchain Demo">
|
||||
</p>
|
||||
|
||||
For example, you can create an Elon Musk bot using the following code:
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# Create a bot instance
|
||||
os.environ["OPENAI_API_KEY"] = "<YOUR_API_KEY>"
|
||||
app = App()
|
||||
|
||||
# Embed online resources
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Query the app
|
||||
app.query("How many companies does Elon Musk run and name those?")
|
||||
# Answer: Elon Musk currently runs several companies. As of my knowledge, he is the CEO and lead designer of SpaceX, the CEO and product architect of Tesla, Inc., the CEO and founder of Neuralink, and the CEO and founder of The Boring Company. However, please note that this information may change over time, so it's always good to verify the latest updates.
|
||||
```
|
||||
|
||||
You can also try it in your browser with Google Colab:
|
||||
|
||||
[](https://colab.research.google.com/drive/17ON1LPonnXAtLaZEebnOktstB_1cJJmh?usp=sharing)
|
||||
|
||||
## 📖 Documentation
|
||||
Comprehensive guides and API documentation are available to help you get the most out of Embedchain:
|
||||
|
||||
- [Introduction](https://docs.embedchain.ai/get-started/introduction#what-is-embedchain)
|
||||
- [Getting Started](https://docs.embedchain.ai/get-started/quickstart)
|
||||
- [Examples](https://docs.embedchain.ai/examples)
|
||||
- [Supported data types](https://docs.embedchain.ai/components/data-sources/overview)
|
||||
|
||||
## 🔗 Join the Community
|
||||
|
||||
* Connect with fellow developers by joining our [Slack Community](https://embedchain.ai/slack) or [Discord Community](https://embedchain.ai/discord).
|
||||
|
||||
* Dive into [GitHub Discussions](https://github.com/embedchain/embedchain/discussions), ask questions, or share your experiences.
|
||||
|
||||
## 🤝 Schedule a 1-on-1 Session
|
||||
|
||||
Book a [1-on-1 Session](https://cal.com/taranjeetio/ec) with the founders, to discuss any issues, provide feedback, or explore how we can improve Embedchain for you.
|
||||
|
||||
## 🌐 Contributing
|
||||
|
||||
Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request.
|
||||
For more information, please see the [contributing guidelines](CONTRIBUTING.md).
|
||||
|
||||
For more reference, please go through [Development Guide](https://docs.embedchain.ai/contribution/dev) and [Documentation Guide](https://docs.embedchain.ai/contribution/docs).
|
||||
|
||||
<a href="https://github.com/embedchain/embedchain/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=embedchain/embedchain" />
|
||||
</a>
|
||||
|
||||
## Anonymous Telemetry
|
||||
|
||||
We collect anonymous usage metrics to enhance our package's quality and user experience. This includes data like feature usage frequency and system info, but never personal details. The data helps us prioritize improvements and ensure compatibility. If you wish to opt-out, set the environment variable `EC_TELEMETRY=false`. We prioritize data security and don't share this data externally.
|
||||
|
||||
## Citation
|
||||
|
||||
If you utilize this repository, please consider citing it with:
|
||||
|
||||
```
|
||||
@misc{embedchain,
|
||||
author = {Taranjeet Singh, Deshraj Yadav},
|
||||
title = {Embedchain: The Open Source RAG Framework},
|
||||
year = {2023},
|
||||
publisher = {GitHub},
|
||||
journal = {GitHub repository},
|
||||
howpublished = {\url{https://github.com/embedchain/embedchain}},
|
||||
}
|
||||
```
|
||||
8
embedchain/configs/anthropic.yaml
Normal file
8
embedchain/configs/anthropic.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
llm:
|
||||
provider: anthropic
|
||||
config:
|
||||
model: 'claude-instant-1'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
19
embedchain/configs/azure_openai.yaml
Normal file
19
embedchain/configs/azure_openai.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
app:
|
||||
config:
|
||||
id: azure-openai-app
|
||||
|
||||
llm:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: gpt-35-turbo
|
||||
deployment_name: your_llm_deployment_name
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: text-embedding-ada-002
|
||||
deployment_name: you_embedding_model_deployment_name
|
||||
24
embedchain/configs/chroma.yaml
Normal file
24
embedchain/configs/chroma.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
app:
|
||||
config:
|
||||
id: 'my-app'
|
||||
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-3.5-turbo'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'my-app'
|
||||
dir: db
|
||||
allow_reset: true
|
||||
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-ada-002'
|
||||
4
embedchain/configs/chunker.yaml
Normal file
4
embedchain/configs/chunker.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
chunker:
|
||||
chunk_size: 100
|
||||
chunk_overlap: 20
|
||||
length_function: 'len'
|
||||
12
embedchain/configs/clarifai.yaml
Normal file
12
embedchain/configs/clarifai.yaml
Normal file
@@ -0,0 +1,12 @@
|
||||
llm:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct"
|
||||
model_kwargs:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
|
||||
embedder:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
|
||||
7
embedchain/configs/cohere.yaml
Normal file
7
embedchain/configs/cohere.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
llm:
|
||||
provider: cohere
|
||||
config:
|
||||
model: large
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
40
embedchain/configs/full-stack.yaml
Normal file
40
embedchain/configs/full-stack.yaml
Normal file
@@ -0,0 +1,40 @@
|
||||
app:
|
||||
config:
|
||||
id: 'full-stack-app'
|
||||
|
||||
chunker:
|
||||
chunk_size: 100
|
||||
chunk_overlap: 20
|
||||
length_function: 'len'
|
||||
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-3.5-turbo'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
prompt: |
|
||||
Use the following pieces of context to answer the query at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
|
||||
$context
|
||||
|
||||
Query: $query
|
||||
|
||||
Helpful Answer:
|
||||
system_prompt: |
|
||||
Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.
|
||||
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'my-collection-name'
|
||||
dir: db
|
||||
allow_reset: true
|
||||
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-ada-002'
|
||||
13
embedchain/configs/google.yaml
Normal file
13
embedchain/configs/google.yaml
Normal file
@@ -0,0 +1,13 @@
|
||||
llm:
|
||||
provider: google
|
||||
config:
|
||||
model: gemini-pro
|
||||
max_tokens: 1000
|
||||
temperature: 0.9
|
||||
top_p: 1.0
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: google
|
||||
config:
|
||||
model: models/embedding-001
|
||||
8
embedchain/configs/gpt4.yaml
Normal file
8
embedchain/configs/gpt4.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-4'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
11
embedchain/configs/gpt4all.yaml
Normal file
11
embedchain/configs/gpt4all.yaml
Normal file
@@ -0,0 +1,11 @@
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
8
embedchain/configs/huggingface.yaml
Normal file
8
embedchain/configs/huggingface.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
llm:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'google/flan-t5-xxl'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 0.5
|
||||
stream: false
|
||||
7
embedchain/configs/jina.yaml
Normal file
7
embedchain/configs/jina.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
llm:
|
||||
provider: jina
|
||||
config:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
8
embedchain/configs/llama2.yaml
Normal file
8
embedchain/configs/llama2.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
llm:
|
||||
provider: llama2
|
||||
config:
|
||||
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 0.5
|
||||
stream: false
|
||||
14
embedchain/configs/ollama.yaml
Normal file
14
embedchain/configs/ollama.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
llm:
|
||||
provider: ollama
|
||||
config:
|
||||
model: 'llama2'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
stream: true
|
||||
base_url: http://localhost:11434
|
||||
|
||||
embedder:
|
||||
provider: ollama
|
||||
config:
|
||||
model: 'mxbai-embed-large:latest'
|
||||
base_url: http://localhost:11434
|
||||
33
embedchain/configs/opensearch.yaml
Normal file
33
embedchain/configs/opensearch.yaml
Normal file
@@ -0,0 +1,33 @@
|
||||
app:
|
||||
config:
|
||||
id: 'my-app'
|
||||
log_level: 'WARNING'
|
||||
collect_metrics: true
|
||||
collection_name: 'my-app'
|
||||
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-3.5-turbo'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
vectordb:
|
||||
provider: opensearch
|
||||
config:
|
||||
opensearch_url: 'https://localhost:9200'
|
||||
http_auth:
|
||||
- admin
|
||||
- admin
|
||||
vector_dimension: 1536
|
||||
collection_name: 'my-app'
|
||||
use_ssl: false
|
||||
verify_certs: false
|
||||
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-ada-002'
|
||||
deployment_name: 'my-app'
|
||||
25
embedchain/configs/opensource.yaml
Normal file
25
embedchain/configs/opensource.yaml
Normal file
@@ -0,0 +1,25 @@
|
||||
app:
|
||||
config:
|
||||
id: 'open-source-app'
|
||||
collect_metrics: false
|
||||
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'open-source-app'
|
||||
dir: db
|
||||
allow_reset: true
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
deployment_name: 'test-deployment'
|
||||
6
embedchain/configs/pinecone.yaml
Normal file
6
embedchain/configs/pinecone.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
vectordb:
|
||||
provider: pinecone
|
||||
config:
|
||||
metric: cosine
|
||||
vector_dimension: 1536
|
||||
collection_name: my-pinecone-index
|
||||
26
embedchain/configs/pipeline.yaml
Normal file
26
embedchain/configs/pipeline.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
pipeline:
|
||||
config:
|
||||
name: Example pipeline
|
||||
id: pipeline-1 # Make sure that id is different every time you create a new pipeline
|
||||
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: pipeline-1
|
||||
dir: db
|
||||
allow_reset: true
|
||||
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedding_model:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
deployment_name: null
|
||||
6
embedchain/configs/together.yaml
Normal file
6
embedchain/configs/together.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
llm:
|
||||
provider: together
|
||||
config:
|
||||
model: mistralai/Mixtral-8x7B-Instruct-v0.1
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
6
embedchain/configs/vertexai.yaml
Normal file
6
embedchain/configs/vertexai.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
llm:
|
||||
provider: vertexai
|
||||
config:
|
||||
model: 'chat-bison'
|
||||
temperature: 0.5
|
||||
top_p: 0.5
|
||||
14
embedchain/configs/vllm.yaml
Normal file
14
embedchain/configs/vllm.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
llm:
|
||||
provider: vllm
|
||||
config:
|
||||
model: 'meta-llama/Llama-2-70b-hf'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
top_k: 10
|
||||
stream: true
|
||||
trust_remote_code: true
|
||||
|
||||
embedder:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'BAAI/bge-small-en-v1.5'
|
||||
4
embedchain/configs/weaviate.yaml
Normal file
4
embedchain/configs/weaviate.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
vectordb:
|
||||
provider: weaviate
|
||||
config:
|
||||
collection_name: my_weaviate_index
|
||||
@@ -1,88 +0,0 @@
|
||||
import os
|
||||
|
||||
from alembic import command
|
||||
from alembic.config import Config
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy.engine.base import Engine
|
||||
from sqlalchemy.orm import Session as SQLAlchemySession
|
||||
from sqlalchemy.orm import scoped_session, sessionmaker
|
||||
|
||||
from .models import Base
|
||||
|
||||
|
||||
class DatabaseManager:
|
||||
def __init__(self, echo: bool = False):
|
||||
self.database_uri = os.environ.get("EMBEDCHAIN_DB_URI")
|
||||
self.echo = echo
|
||||
self.engine: Engine = None
|
||||
self._session_factory = None
|
||||
|
||||
def setup_engine(self) -> None:
|
||||
"""Initializes the database engine and session factory."""
|
||||
if not self.database_uri:
|
||||
raise RuntimeError("Database URI is not set. Set the EMBEDCHAIN_DB_URI environment variable.")
|
||||
connect_args = {}
|
||||
if self.database_uri.startswith("sqlite"):
|
||||
connect_args["check_same_thread"] = False
|
||||
self.engine = create_engine(self.database_uri, echo=self.echo, connect_args=connect_args)
|
||||
self._session_factory = scoped_session(sessionmaker(bind=self.engine))
|
||||
Base.metadata.bind = self.engine
|
||||
|
||||
def init_db(self) -> None:
|
||||
"""Creates all tables defined in the Base metadata."""
|
||||
if not self.engine:
|
||||
raise RuntimeError("Database engine is not initialized. Call setup_engine() first.")
|
||||
Base.metadata.create_all(self.engine)
|
||||
|
||||
def get_session(self) -> SQLAlchemySession:
|
||||
"""Provides a session for database operations."""
|
||||
if not self._session_factory:
|
||||
raise RuntimeError("Session factory is not initialized. Call setup_engine() first.")
|
||||
return self._session_factory()
|
||||
|
||||
def close_session(self) -> None:
|
||||
"""Closes the current session."""
|
||||
if self._session_factory:
|
||||
self._session_factory.remove()
|
||||
|
||||
def execute_transaction(self, transaction_block):
|
||||
"""Executes a block of code within a database transaction."""
|
||||
session = self.get_session()
|
||||
try:
|
||||
transaction_block(session)
|
||||
session.commit()
|
||||
except Exception as e:
|
||||
session.rollback()
|
||||
raise e
|
||||
finally:
|
||||
self.close_session()
|
||||
|
||||
|
||||
# Singleton pattern to use throughout the application
|
||||
database_manager = DatabaseManager()
|
||||
|
||||
|
||||
# Convenience functions for backward compatibility and ease of use
|
||||
def setup_engine(database_uri: str, echo: bool = False) -> None:
|
||||
database_manager.database_uri = database_uri
|
||||
database_manager.echo = echo
|
||||
database_manager.setup_engine()
|
||||
|
||||
|
||||
def alembic_upgrade() -> None:
|
||||
"""Upgrades the database to the latest version."""
|
||||
alembic_config_path = os.path.join(os.path.dirname(__file__), "..", "..", "alembic.ini")
|
||||
alembic_cfg = Config(alembic_config_path)
|
||||
command.upgrade(alembic_cfg, "head")
|
||||
|
||||
|
||||
def init_db() -> None:
|
||||
alembic_upgrade()
|
||||
|
||||
|
||||
def get_session() -> SQLAlchemySession:
|
||||
return database_manager.get_session()
|
||||
|
||||
|
||||
def execute_transaction(transaction_block):
|
||||
database_manager.execute_transaction(transaction_block)
|
||||
@@ -1,31 +0,0 @@
|
||||
import uuid
|
||||
|
||||
from sqlalchemy import TIMESTAMP, Column, Integer, String, Text, func
|
||||
from sqlalchemy.orm import declarative_base
|
||||
|
||||
Base = declarative_base()
|
||||
metadata = Base.metadata
|
||||
|
||||
|
||||
class DataSource(Base):
|
||||
__tablename__ = "ec_data_sources"
|
||||
|
||||
id = Column(String, primary_key=True, default=lambda: str(uuid.uuid4()))
|
||||
app_id = Column(Text, index=True)
|
||||
hash = Column(Text, index=True)
|
||||
type = Column(Text, index=True)
|
||||
value = Column(Text)
|
||||
meta_data = Column(Text, name="metadata")
|
||||
is_uploaded = Column(Integer, default=0)
|
||||
|
||||
|
||||
class ChatHistory(Base):
|
||||
__tablename__ = "ec_chat_history"
|
||||
|
||||
app_id = Column(String, primary_key=True)
|
||||
id = Column(String, primary_key=True)
|
||||
session_id = Column(String, primary_key=True, index=True)
|
||||
question = Column(Text)
|
||||
answer = Column(Text)
|
||||
meta_data = Column(Text, name="metadata")
|
||||
created_at = Column(TIMESTAMP, default=func.current_timestamp(), index=True)
|
||||
10
embedchain/docs/Makefile
Normal file
10
embedchain/docs/Makefile
Normal file
@@ -0,0 +1,10 @@
|
||||
install:
|
||||
npm i -g mintlify
|
||||
|
||||
run_local:
|
||||
mintlify dev
|
||||
|
||||
troubleshoot:
|
||||
mintlify install
|
||||
|
||||
.PHONY: install run_local troubleshoot
|
||||
25
embedchain/docs/README.md
Normal file
25
embedchain/docs/README.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Contributing to embedchain docs
|
||||
|
||||
|
||||
### 👩💻 Development
|
||||
|
||||
Install the [Mintlify CLI](https://www.npmjs.com/package/mintlify) to preview the documentation changes locally. To install, use the following command
|
||||
|
||||
```
|
||||
npm i -g mintlify
|
||||
```
|
||||
|
||||
Run the following command at the root of your documentation (where mint.json is)
|
||||
|
||||
```
|
||||
mintlify dev
|
||||
```
|
||||
|
||||
### 😎 Publishing Changes
|
||||
|
||||
Changes will be deployed to production automatically after your PR is merged to the main branch.
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
- Mintlify dev isn't running - Run `mintlify install` it'll re-install dependencies.
|
||||
- Page loads as a 404 - Make sure you are running in a folder with `mint.json`
|
||||
11
embedchain/docs/_snippets/get-help.mdx
Normal file
11
embedchain/docs/_snippets/get-help.mdx
Normal file
@@ -0,0 +1,11 @@
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Talk to founders" icon="calendar" href="https://cal.com/taranjeetio/ec">
|
||||
Schedule a call
|
||||
</Card>
|
||||
<Card title="Slack" icon="slack" href="https://embedchain.ai/slack" color="#4A154B">
|
||||
Join our slack community
|
||||
</Card>
|
||||
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
|
||||
Join our discord community
|
||||
</Card>
|
||||
</CardGroup>
|
||||
19
embedchain/docs/_snippets/missing-data-source-tip.mdx
Normal file
19
embedchain/docs/_snippets/missing-data-source-tip.mdx
Normal file
@@ -0,0 +1,19 @@
|
||||
<p>If you can't find the specific data source, please feel free to request through one of the following channels and help us prioritize.</p>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Google Form" icon="file" href="https://forms.gle/NDRCKsRpUHsz2Wcm8" color="#7387d0">
|
||||
Fill out this form
|
||||
</Card>
|
||||
<Card title="Slack" icon="slack" href="https://embedchain.ai/slack" color="#4A154B">
|
||||
Let us know on our slack community
|
||||
</Card>
|
||||
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
|
||||
Let us know on discord community
|
||||
</Card>
|
||||
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
|
||||
Open an issue on our GitHub
|
||||
</Card>
|
||||
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
|
||||
Schedule a call with Embedchain founder
|
||||
</Card>
|
||||
</CardGroup>
|
||||
16
embedchain/docs/_snippets/missing-llm-tip.mdx
Normal file
16
embedchain/docs/_snippets/missing-llm-tip.mdx
Normal file
@@ -0,0 +1,16 @@
|
||||
<p>If you can't find the specific LLM you need, no need to fret. We're continuously expanding our support for additional LLMs, and you can help us prioritize by opening an issue on our GitHub or simply reaching out to us on our Slack or Discord community.</p>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Slack" icon="slack" href="https://embedchain.ai/slack" color="#4A154B">
|
||||
Let us know on our slack community
|
||||
</Card>
|
||||
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
|
||||
Let us know on discord community
|
||||
</Card>
|
||||
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
|
||||
Open an issue on our GitHub
|
||||
</Card>
|
||||
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
|
||||
Schedule a call with Embedchain founder
|
||||
</Card>
|
||||
</CardGroup>
|
||||
18
embedchain/docs/_snippets/missing-vector-db-tip.mdx
Normal file
18
embedchain/docs/_snippets/missing-vector-db-tip.mdx
Normal file
@@ -0,0 +1,18 @@
|
||||
|
||||
|
||||
<p>If you can't find specific feature or run into issues, please feel free to reach out through one of the following channels.</p>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Slack" icon="slack" href="https://embedchain.ai/slack" color="#4A154B">
|
||||
Let us know on our slack community
|
||||
</Card>
|
||||
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
|
||||
Let us know on discord community
|
||||
</Card>
|
||||
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
|
||||
Open an issue on our GitHub
|
||||
</Card>
|
||||
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
|
||||
Schedule a call with Embedchain founder
|
||||
</Card>
|
||||
</CardGroup>
|
||||
260
embedchain/docs/api-reference/advanced/configuration.mdx
Normal file
260
embedchain/docs/api-reference/advanced/configuration.mdx
Normal file
@@ -0,0 +1,260 @@
|
||||
---
|
||||
title: 'Custom configurations'
|
||||
---
|
||||
|
||||
Embedchain offers several configuration options for your LLM, vector database, and embedding model. All of these configuration options are optional and have sane defaults.
|
||||
|
||||
You can configure different components of your app (`llm`, `embedding model`, or `vector database`) through a simple yaml configuration that Embedchain offers. Here is a generic full-stack example of the yaml config:
|
||||
|
||||
|
||||
<Tip>
|
||||
Embedchain applications are configurable using YAML file, JSON file or by directly passing the config dictionary. Checkout the [docs here](/api-reference/app/overview#usage) on how to use other formats.
|
||||
</Tip>
|
||||
|
||||
<CodeGroup>
|
||||
```yaml config.yaml
|
||||
app:
|
||||
config:
|
||||
name: 'full-stack-app'
|
||||
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-3.5-turbo'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
api_key: sk-xxx
|
||||
model_kwargs:
|
||||
response_format:
|
||||
type: json_object
|
||||
api_version: 2024-02-01
|
||||
http_client_proxies: http://testproxy.mem0.net:8000
|
||||
prompt: |
|
||||
Use the following pieces of context to answer the query at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
|
||||
$context
|
||||
|
||||
Query: $query
|
||||
|
||||
Helpful Answer:
|
||||
system_prompt: |
|
||||
Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.
|
||||
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'full-stack-app'
|
||||
dir: db
|
||||
allow_reset: true
|
||||
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-ada-002'
|
||||
api_key: sk-xxx
|
||||
|
||||
chunker:
|
||||
chunk_size: 2000
|
||||
chunk_overlap: 100
|
||||
length_function: 'len'
|
||||
min_chunk_size: 0
|
||||
|
||||
cache:
|
||||
similarity_evaluation:
|
||||
strategy: distance
|
||||
max_distance: 1.0
|
||||
config:
|
||||
similarity_threshold: 0.8
|
||||
auto_flush: 50
|
||||
```
|
||||
|
||||
```json config.json
|
||||
{
|
||||
"app": {
|
||||
"config": {
|
||||
"name": "full-stack-app"
|
||||
}
|
||||
},
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"temperature": 0.5,
|
||||
"max_tokens": 1000,
|
||||
"top_p": 1,
|
||||
"stream": false,
|
||||
"prompt": "Use the following pieces of context to answer the query at the end.\nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n$context\n\nQuery: $query\n\nHelpful Answer:",
|
||||
"system_prompt": "Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.",
|
||||
"api_key": "sk-xxx",
|
||||
"model_kwargs": {"response_format": {"type": "json_object"}},
|
||||
"api_version": "2024-02-01",
|
||||
"http_client_proxies": "http://testproxy.mem0.net:8000",
|
||||
}
|
||||
},
|
||||
"vectordb": {
|
||||
"provider": "chroma",
|
||||
"config": {
|
||||
"collection_name": "full-stack-app",
|
||||
"dir": "db",
|
||||
"allow_reset": true
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "text-embedding-ada-002",
|
||||
"api_key": "sk-xxx"
|
||||
}
|
||||
},
|
||||
"chunker": {
|
||||
"chunk_size": 2000,
|
||||
"chunk_overlap": 100,
|
||||
"length_function": "len",
|
||||
"min_chunk_size": 0
|
||||
},
|
||||
"cache": {
|
||||
"similarity_evaluation": {
|
||||
"strategy": "distance",
|
||||
"max_distance": 1.0,
|
||||
},
|
||||
"config": {
|
||||
"similarity_threshold": 0.8,
|
||||
"auto_flush": 50,
|
||||
},
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
```python config.py
|
||||
config = {
|
||||
'app': {
|
||||
'config': {
|
||||
'name': 'full-stack-app'
|
||||
}
|
||||
},
|
||||
'llm': {
|
||||
'provider': 'openai',
|
||||
'config': {
|
||||
'model': 'gpt-3.5-turbo',
|
||||
'temperature': 0.5,
|
||||
'max_tokens': 1000,
|
||||
'top_p': 1,
|
||||
'stream': False,
|
||||
'prompt': (
|
||||
"Use the following pieces of context to answer the query at the end.\n"
|
||||
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n"
|
||||
"$context\n\nQuery: $query\n\nHelpful Answer:"
|
||||
),
|
||||
'system_prompt': (
|
||||
"Act as William Shakespeare. Answer the following questions in the style of William Shakespeare."
|
||||
),
|
||||
'api_key': 'sk-xxx',
|
||||
"model_kwargs": {"response_format": {"type": "json_object"}},
|
||||
"http_client_proxies": "http://testproxy.mem0.net:8000",
|
||||
}
|
||||
},
|
||||
'vectordb': {
|
||||
'provider': 'chroma',
|
||||
'config': {
|
||||
'collection_name': 'full-stack-app',
|
||||
'dir': 'db',
|
||||
'allow_reset': True
|
||||
}
|
||||
},
|
||||
'embedder': {
|
||||
'provider': 'openai',
|
||||
'config': {
|
||||
'model': 'text-embedding-ada-002',
|
||||
'api_key': 'sk-xxx'
|
||||
}
|
||||
},
|
||||
'chunker': {
|
||||
'chunk_size': 2000,
|
||||
'chunk_overlap': 100,
|
||||
'length_function': 'len',
|
||||
'min_chunk_size': 0
|
||||
},
|
||||
'cache': {
|
||||
'similarity_evaluation': {
|
||||
'strategy': 'distance',
|
||||
'max_distance': 1.0,
|
||||
},
|
||||
'config': {
|
||||
'similarity_threshold': 0.8,
|
||||
'auto_flush': 50,
|
||||
},
|
||||
},
|
||||
}
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
Alright, let's dive into what each key means in the yaml config above:
|
||||
|
||||
1. `app` Section:
|
||||
- `config`:
|
||||
- `name` (String): The name of your full-stack application.
|
||||
- `id` (String): The id of your full-stack application.
|
||||
<Note>Only use this to reload already created apps. We recommend users to not create their own ids.</Note>
|
||||
- `collect_metrics` (Boolean): Indicates whether metrics should be collected for the app, defaults to `True`
|
||||
- `log_level` (String): The log level for the app, defaults to `WARNING`
|
||||
2. `llm` Section:
|
||||
- `provider` (String): The provider for the language model, which is set to 'openai'. You can find the full list of llm providers in [our docs](/components/llms).
|
||||
- `config`:
|
||||
- `model` (String): The specific model being used, 'gpt-3.5-turbo'.
|
||||
- `temperature` (Float): Controls the randomness of the model's output. A higher value (closer to 1) makes the output more random.
|
||||
- `max_tokens` (Integer): Controls how many tokens are used in the response.
|
||||
- `top_p` (Float): Controls the diversity of word selection. A higher value (closer to 1) makes word selection more diverse.
|
||||
- `stream` (Boolean): Controls if the response is streamed back to the user (set to false).
|
||||
- `online` (Boolean): Controls whether to use internet to get more context for answering query (set to false).
|
||||
- `token_usage` (Boolean): Controls whether to use token usage for the querying models (set to false).
|
||||
- `prompt` (String): A prompt for the model to follow when generating responses, requires `$context` and `$query` variables.
|
||||
- `system_prompt` (String): A system prompt for the model to follow when generating responses, in this case, it's set to the style of William Shakespeare.
|
||||
- `number_documents` (Integer): Number of documents to pull from the vectordb as context, defaults to 1
|
||||
- `api_key` (String): The API key for the language model.
|
||||
- `model_kwargs` (Dict): Keyword arguments to pass to the language model. Used for `aws_bedrock` provider, since it requires different arguments for each model.
|
||||
- `http_client_proxies` (Dict | String): The proxy server settings used to create `self.http_client` using `httpx.Client(proxies=http_client_proxies)`
|
||||
- `http_async_client_proxies` (Dict | String): The proxy server settings for async calls used to create `self.http_async_client` using `httpx.AsyncClient(proxies=http_async_client_proxies)`
|
||||
3. `vectordb` Section:
|
||||
- `provider` (String): The provider for the vector database, set to 'chroma'. You can find the full list of vector database providers in [our docs](/components/vector-databases).
|
||||
- `config`:
|
||||
- `collection_name` (String): The initial collection name for the vectordb, set to 'full-stack-app'.
|
||||
- `dir` (String): The directory for the local database, set to 'db'.
|
||||
- `allow_reset` (Boolean): Indicates whether resetting the vectordb is allowed, set to true.
|
||||
- `batch_size` (Integer): The batch size for docs insertion in vectordb, defaults to `100`
|
||||
<Note>We recommend you to checkout vectordb specific config [here](https://docs.embedchain.ai/components/vector-databases)</Note>
|
||||
4. `embedder` Section:
|
||||
- `provider` (String): The provider for the embedder, set to 'openai'. You can find the full list of embedding model providers in [our docs](/components/embedding-models).
|
||||
- `config`:
|
||||
- `model` (String): The specific model used for text embedding, 'text-embedding-ada-002'.
|
||||
- `vector_dimension` (Integer): The vector dimension of the embedding model. [Defaults](https://github.com/embedchain/embedchain/blob/main/embedchain/models/vector_dimensions.py)
|
||||
- `api_key` (String): The API key for the embedding model.
|
||||
- `endpoint` (String): The endpoint for the HuggingFace embedding model.
|
||||
- `deployment_name` (String): The deployment name for the embedding model.
|
||||
- `title` (String): The title for the embedding model for Google Embedder.
|
||||
- `task_type` (String): The task type for the embedding model for Google Embedder.
|
||||
- `model_kwargs` (Dict): Used to pass extra arguments to embedders.
|
||||
5. `chunker` Section:
|
||||
- `chunk_size` (Integer): The size of each chunk of text that is sent to the language model.
|
||||
- `chunk_overlap` (Integer): The amount of overlap between each chunk of text.
|
||||
- `length_function` (String): The function used to calculate the length of each chunk of text. In this case, it's set to 'len'. You can also use any function import directly as a string here.
|
||||
- `min_chunk_size` (Integer): The minimum size of each chunk of text that is sent to the language model. Must be less than `chunk_size`, and greater than `chunk_overlap`.
|
||||
6. `cache` Section: (Optional)
|
||||
- `similarity_evaluation` (Optional): The config for similarity evaluation strategy. If not provided, the default `distance` based similarity evaluation strategy is used.
|
||||
- `strategy` (String): The strategy to use for similarity evaluation. Currently, only `distance` and `exact` based similarity evaluation is supported. Defaults to `distance`.
|
||||
- `max_distance` (Float): The bound of maximum distance. Defaults to `1.0`.
|
||||
- `positive` (Boolean): If the larger distance indicates more similar of two entities, set it `True`, otherwise `False`. Defaults to `False`.
|
||||
- `config` (Optional): The config for initializing the cache. If not provided, sensible default values are used as mentioned below.
|
||||
- `similarity_threshold` (Float): The threshold for similarity evaluation. Defaults to `0.8`.
|
||||
- `auto_flush` (Integer): The number of queries after which the cache is flushed. Defaults to `20`.
|
||||
7. `memory` Section: (Optional)
|
||||
- `api_key` (String): The API key of mem0.
|
||||
- `top_k` (Integer): The number of top-k results to return. Defaults to `10`.
|
||||
<Note>
|
||||
If you provide a cache section, the app will automatically configure and use a cache to store the results of the language model. This is useful if you want to speed up the response time and save inference cost of your app.
|
||||
</Note>
|
||||
If you have questions about the configuration above, please feel free to reach out to us using one of the following methods:
|
||||
|
||||
<Snippet file="get-help.mdx" />
|
||||
44
embedchain/docs/api-reference/app/add.mdx
Normal file
44
embedchain/docs/api-reference/app/add.mdx
Normal file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
title: '📊 add'
|
||||
---
|
||||
|
||||
`add()` method is used to load the data sources from different data sources to a RAG pipeline. You can find the signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="source" type="str">
|
||||
The data to embed, can be a URL, local file or raw content, depending on the data type.. You can find the full list of supported data sources [here](/components/data-sources/overview).
|
||||
</ParamField>
|
||||
<ParamField path="data_type" type="str" optional>
|
||||
Type of data source. It can be automatically detected but user can force what data type to load as.
|
||||
</ParamField>
|
||||
<ParamField path="metadata" type="dict" optional>
|
||||
Any metadata that you want to store with the data source. Metadata is generally really useful for doing metadata filtering on top of semantic search to yield faster search and better results.
|
||||
</ParamField>
|
||||
|
||||
## Usage
|
||||
|
||||
### Load data from webpage
|
||||
|
||||
```python Code example
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
# Inserting batches in chromadb: 100%|███████████████| 1/1 [00:00<00:00, 1.19it/s]
|
||||
# Successfully saved https://www.forbes.com/profile/elon-musk (DataType.WEB_PAGE). New chunks count: 4
|
||||
```
|
||||
|
||||
### Load data from sitemap
|
||||
|
||||
```python Code example
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://python.langchain.com/sitemap.xml", data_type="sitemap")
|
||||
# Loading pages: 100%|█████████████| 1108/1108 [00:47<00:00, 23.17it/s]
|
||||
# Inserting batches in chromadb: 100%|█████████| 111/111 [04:41<00:00, 2.54s/it]
|
||||
# Successfully saved https://python.langchain.com/sitemap.xml (DataType.SITEMAP). New chunks count: 11024
|
||||
```
|
||||
|
||||
You can find complete list of supported data sources [here](/components/data-sources/overview).
|
||||
171
embedchain/docs/api-reference/app/chat.mdx
Normal file
171
embedchain/docs/api-reference/app/chat.mdx
Normal file
@@ -0,0 +1,171 @@
|
||||
---
|
||||
title: '💬 chat'
|
||||
---
|
||||
|
||||
`chat()` method allows you to chat over your data sources using a user-friendly chat API. You can find the signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="input_query" type="str">
|
||||
Question to ask
|
||||
</ParamField>
|
||||
<ParamField path="config" type="BaseLlmConfig" optional>
|
||||
Configure different llm settings such as prompt, temprature, number_documents etc.
|
||||
</ParamField>
|
||||
<ParamField path="dry_run" type="bool" optional>
|
||||
The purpose is to test the prompt structure without actually running LLM inference. Defaults to `False`
|
||||
</ParamField>
|
||||
<ParamField path="where" type="dict" optional>
|
||||
A dictionary of key-value pairs to filter the chunks from the vector database. Defaults to `None`
|
||||
</ParamField>
|
||||
<ParamField path="session_id" type="str" optional>
|
||||
Session ID of the chat. This can be used to maintain chat history of different user sessions. Default value: `default`
|
||||
</ParamField>
|
||||
<ParamField path="citations" type="bool" optional>
|
||||
Return citations along with the LLM answer. Defaults to `False`
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="answer" type="str | tuple">
|
||||
If `citations=False`, return a stringified answer to the question asked. <br />
|
||||
If `citations=True`, returns a tuple with answer and citations respectively.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
### With citations
|
||||
|
||||
If you want to get the answer to question and return both answer and citations, use the following code snippet:
|
||||
|
||||
```python With Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Get relevant answer for your query
|
||||
answer, sources = app.chat("What is the net worth of Elon?", citations=True)
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
|
||||
print(sources)
|
||||
# [
|
||||
# (
|
||||
# 'Elon Musk PROFILEElon MuskCEO, Tesla$247.1B$2.3B (0.96%)Real Time Net Worthas of 12/7/23 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.89,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# '74% of the company, which is now called X.Wealth HistoryHOVER TO REVEAL NET WORTH BY YEARForbes ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.81,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# 'founded in 2002, is worth nearly $150 billion after a $750 million tender offer in June 2023 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.73,
|
||||
# ...
|
||||
# }
|
||||
# )
|
||||
# ]
|
||||
```
|
||||
|
||||
<Note>
|
||||
When `citations=True`, note that the returned `sources` are a list of tuples where each tuple has two elements (in the following order):
|
||||
1. source chunk
|
||||
2. dictionary with metadata about the source chunk
|
||||
- `url`: url of the source
|
||||
- `doc_id`: document id (used for book keeping purposes)
|
||||
- `score`: score of the source chunk with respect to the question
|
||||
- other metadata you might have added at the time of adding the source
|
||||
</Note>
|
||||
|
||||
|
||||
### Without citations
|
||||
|
||||
If you just want to return answers and don't want to return citations, you can use the following example:
|
||||
|
||||
```python Without Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Chat on your data using `.chat()`
|
||||
answer = app.chat("What is the net worth of Elon?")
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
```
|
||||
|
||||
### With session id
|
||||
|
||||
If you want to maintain chat sessions for different users, you can simply pass the `session_id` keyword argument. See the example below:
|
||||
|
||||
```python With session id
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Chat on your data using `.chat()`
|
||||
app.chat("What is the net worth of Elon Musk?", session_id="user1")
|
||||
# 'The net worth of Elon Musk is $250.8 billion.'
|
||||
app.chat("What is the net worth of Bill Gates?", session_id="user2")
|
||||
# "I don't know the current net worth of Bill Gates."
|
||||
app.chat("What was my last question", session_id="user1")
|
||||
# 'Your last question was "What is the net worth of Elon Musk?"'
|
||||
```
|
||||
|
||||
### With custom context window
|
||||
|
||||
If you want to customize the context window that you want to use during chat (default context window is 3 document chunks), you can do using the following code snippet:
|
||||
|
||||
```python with custom chunks size
|
||||
from embedchain import App
|
||||
from embedchain.config import BaseLlmConfig
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
query_config = BaseLlmConfig(number_documents=5)
|
||||
app.chat("What is the net worth of Elon Musk?", config=query_config)
|
||||
```
|
||||
|
||||
### With Mem0 to store chat history
|
||||
|
||||
Mem0 is a cutting-edge long-term memory for LLMs to enable personalization for the GenAI stack. It enables LLMs to remember past interactions and provide more personalized responses.
|
||||
|
||||
Follow these steps to use Mem0 to enable memory for personalization in your apps:
|
||||
- Install the [`mem0`](https://docs.mem0.ai/) package using `pip install memzero`.
|
||||
- Get the api_key from [Mem0 Platform](https://app.mem0.ai/).
|
||||
- Provide api_key in config under `memory`, refer [Configurations](docs/api-reference/advanced/configuration.mdx).
|
||||
|
||||
```python with mem0
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"memory": {
|
||||
"api_key": "m0-xxx",
|
||||
"top_k": 5
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
app.chat("What is the net worth of Elon Musk?")
|
||||
```
|
||||
48
embedchain/docs/api-reference/app/delete.mdx
Normal file
48
embedchain/docs/api-reference/app/delete.mdx
Normal file
@@ -0,0 +1,48 @@
|
||||
---
|
||||
title: 🗑 delete
|
||||
---
|
||||
|
||||
## Delete Document
|
||||
|
||||
`delete()` method allows you to delete a document previously added to the app.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
forbes_doc_id = app.add("https://www.forbes.com/profile/elon-musk")
|
||||
wiki_doc_id = app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
|
||||
app.delete(forbes_doc_id) # deletes the forbes document
|
||||
```
|
||||
|
||||
<Note>
|
||||
If you do not have the document id, you can use `app.db.get()` method to get the document and extract the `hash` key from `metadatas` dictionary object, which serves as the document id.
|
||||
</Note>
|
||||
|
||||
|
||||
## Delete Chat Session History
|
||||
|
||||
`delete_session_chat_history()` method allows you to delete all previous messages in a chat history.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
app.chat("What is the net worth of Elon Musk?")
|
||||
|
||||
app.delete_session_chat_history()
|
||||
```
|
||||
|
||||
<Note>
|
||||
`delete_session_chat_history(session_id="session_1")` method also accepts `session_id` optional param for deleting chat history of a specific session.
|
||||
It assumes the default session if no `session_id` is provided.
|
||||
</Note>
|
||||
5
embedchain/docs/api-reference/app/deploy.mdx
Normal file
5
embedchain/docs/api-reference/app/deploy.mdx
Normal file
@@ -0,0 +1,5 @@
|
||||
---
|
||||
title: 🚀 deploy
|
||||
---
|
||||
|
||||
The `deploy()` method is currently available on an invitation-only basis. To request access, please submit your information via the provided [Google Form](https://forms.gle/vigN11h7b4Ywat668). We will review your request and respond promptly.
|
||||
41
embedchain/docs/api-reference/app/evaluate.mdx
Normal file
41
embedchain/docs/api-reference/app/evaluate.mdx
Normal file
@@ -0,0 +1,41 @@
|
||||
---
|
||||
title: '📝 evaluate'
|
||||
---
|
||||
|
||||
`evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="question" type="Union[str, list[str]]">
|
||||
A question or a list of questions to evaluate your app on.
|
||||
</ParamField>
|
||||
<ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional>
|
||||
The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]`
|
||||
</ParamField>
|
||||
<ParamField path="num_workers" type="int" optional>
|
||||
Specify the number of threads to use for parallel processing.
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="metrics" type="dict">
|
||||
Returns the metrics you have chosen to evaluate your app on as a dictionary.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# run evaluation
|
||||
app.evaluate("what is the net worth of Elon Musk?")
|
||||
# {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613}
|
||||
|
||||
# or
|
||||
# app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"])
|
||||
```
|
||||
33
embedchain/docs/api-reference/app/get.mdx
Normal file
33
embedchain/docs/api-reference/app/get.mdx
Normal file
@@ -0,0 +1,33 @@
|
||||
---
|
||||
title: 📄 get
|
||||
---
|
||||
|
||||
## Get data sources
|
||||
|
||||
`get_data_sources()` returns a list of all the data sources added in the app.
|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
|
||||
data_sources = app.get_data_sources()
|
||||
# [
|
||||
# {
|
||||
# 'data_type': 'web_page',
|
||||
# 'data_value': 'https://en.wikipedia.org/wiki/Elon_Musk',
|
||||
# 'metadata': 'null'
|
||||
# },
|
||||
# {
|
||||
# 'data_type': 'web_page',
|
||||
# 'data_value': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'metadata': 'null'
|
||||
# }
|
||||
# ]
|
||||
```
|
||||
130
embedchain/docs/api-reference/app/overview.mdx
Normal file
130
embedchain/docs/api-reference/app/overview.mdx
Normal file
@@ -0,0 +1,130 @@
|
||||
---
|
||||
title: "App"
|
||||
---
|
||||
|
||||
Create a RAG app object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. An app configures the llm, vector database, embedding model, and retrieval strategy of your choice.
|
||||
|
||||
### Attributes
|
||||
|
||||
<ParamField path="local_id" type="str">
|
||||
App ID
|
||||
</ParamField>
|
||||
<ParamField path="name" type="str" optional>
|
||||
Name of the app
|
||||
</ParamField>
|
||||
<ParamField path="config" type="BaseConfig">
|
||||
Configuration of the app
|
||||
</ParamField>
|
||||
<ParamField path="llm" type="BaseLlm">
|
||||
Configured LLM for the RAG app
|
||||
</ParamField>
|
||||
<ParamField path="db" type="BaseVectorDB">
|
||||
Configured vector database for the RAG app
|
||||
</ParamField>
|
||||
<ParamField path="embedding_model" type="BaseEmbedder">
|
||||
Configured embedding model for the RAG app
|
||||
</ParamField>
|
||||
<ParamField path="chunker" type="ChunkerConfig">
|
||||
Chunker configuration
|
||||
</ParamField>
|
||||
<ParamField path="client" type="Client" optional>
|
||||
Client object (used to deploy an app to Embedchain platform)
|
||||
</ParamField>
|
||||
<ParamField path="logger" type="logging.Logger">
|
||||
Logger object
|
||||
</ParamField>
|
||||
|
||||
## Usage
|
||||
|
||||
You can create an app instance using the following methods:
|
||||
|
||||
### Default setting
|
||||
|
||||
```python Code Example
|
||||
from embedchain import App
|
||||
app = App()
|
||||
```
|
||||
|
||||
|
||||
### Python Dict
|
||||
|
||||
```python Code Example
|
||||
from embedchain import App
|
||||
|
||||
config_dict = {
|
||||
'llm': {
|
||||
'provider': 'gpt4all',
|
||||
'config': {
|
||||
'model': 'orca-mini-3b-gguf2-q4_0.gguf',
|
||||
'temperature': 0.5,
|
||||
'max_tokens': 1000,
|
||||
'top_p': 1,
|
||||
'stream': False
|
||||
}
|
||||
},
|
||||
'embedder': {
|
||||
'provider': 'gpt4all'
|
||||
}
|
||||
}
|
||||
|
||||
# load llm configuration from config dict
|
||||
app = App.from_config(config=config_dict)
|
||||
```
|
||||
|
||||
### YAML Config
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
### JSON Config
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.json file
|
||||
app = App.from_config(config_path="config.json")
|
||||
```
|
||||
|
||||
```json config.json
|
||||
{
|
||||
"llm": {
|
||||
"provider": "gpt4all",
|
||||
"config": {
|
||||
"model": "orca-mini-3b-gguf2-q4_0.gguf",
|
||||
"temperature": 0.5,
|
||||
"max_tokens": 1000,
|
||||
"top_p": 1,
|
||||
"stream": false
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "gpt4all"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
109
embedchain/docs/api-reference/app/query.mdx
Normal file
109
embedchain/docs/api-reference/app/query.mdx
Normal file
@@ -0,0 +1,109 @@
|
||||
---
|
||||
title: '❓ query'
|
||||
---
|
||||
|
||||
`.query()` method empowers developers to ask questions and receive relevant answers through a user-friendly query API. Function signature is given below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="input_query" type="str">
|
||||
Question to ask
|
||||
</ParamField>
|
||||
<ParamField path="config" type="BaseLlmConfig" optional>
|
||||
Configure different llm settings such as prompt, temprature, number_documents etc.
|
||||
</ParamField>
|
||||
<ParamField path="dry_run" type="bool" optional>
|
||||
The purpose is to test the prompt structure without actually running LLM inference. Defaults to `False`
|
||||
</ParamField>
|
||||
<ParamField path="where" type="dict" optional>
|
||||
A dictionary of key-value pairs to filter the chunks from the vector database. Defaults to `None`
|
||||
</ParamField>
|
||||
<ParamField path="citations" type="bool" optional>
|
||||
Return citations along with the LLM answer. Defaults to `False`
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="answer" type="str | tuple">
|
||||
If `citations=False`, return a stringified answer to the question asked. <br />
|
||||
If `citations=True`, returns a tuple with answer and citations respectively.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
### With citations
|
||||
|
||||
If you want to get the answer to question and return both answer and citations, use the following code snippet:
|
||||
|
||||
```python With Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Get relevant answer for your query
|
||||
answer, sources = app.query("What is the net worth of Elon?", citations=True)
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
|
||||
print(sources)
|
||||
# [
|
||||
# (
|
||||
# 'Elon Musk PROFILEElon MuskCEO, Tesla$247.1B$2.3B (0.96%)Real Time Net Worthas of 12/7/23 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.89,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# '74% of the company, which is now called X.Wealth HistoryHOVER TO REVEAL NET WORTH BY YEARForbes ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.81,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# (
|
||||
# 'founded in 2002, is worth nearly $150 billion after a $750 million tender offer in June 2023 ...',
|
||||
# {
|
||||
# 'url': 'https://www.forbes.com/profile/elon-musk',
|
||||
# 'score': 0.73,
|
||||
# ...
|
||||
# }
|
||||
# )
|
||||
# ]
|
||||
```
|
||||
|
||||
<Note>
|
||||
When `citations=True`, note that the returned `sources` are a list of tuples where each tuple has two elements (in the following order):
|
||||
1. source chunk
|
||||
2. dictionary with metadata about the source chunk
|
||||
- `url`: url of the source
|
||||
- `doc_id`: document id (used for book keeping purposes)
|
||||
- `score`: score of the source chunk with respect to the question
|
||||
- other metadata you might have added at the time of adding the source
|
||||
</Note>
|
||||
|
||||
### Without citations
|
||||
|
||||
If you just want to return answers and don't want to return citations, you can use the following example:
|
||||
|
||||
```python Without Citations
|
||||
from embedchain import App
|
||||
|
||||
# Initialize app
|
||||
app = App()
|
||||
|
||||
# Add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Get relevant answer for your query
|
||||
answer = app.query("What is the net worth of Elon?")
|
||||
print(answer)
|
||||
# Answer: The net worth of Elon Musk is $221.9 billion.
|
||||
```
|
||||
|
||||
17
embedchain/docs/api-reference/app/reset.mdx
Normal file
17
embedchain/docs/api-reference/app/reset.mdx
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
title: 🔄 reset
|
||||
---
|
||||
|
||||
`reset()` method allows you to wipe the data from your RAG application and start from scratch.
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Reset the app
|
||||
app.reset()
|
||||
```
|
||||
111
embedchain/docs/api-reference/app/search.mdx
Normal file
111
embedchain/docs/api-reference/app/search.mdx
Normal file
@@ -0,0 +1,111 @@
|
||||
---
|
||||
title: '🔍 search'
|
||||
---
|
||||
|
||||
`.search()` enables you to uncover the most pertinent context by performing a semantic search across your data sources based on a given query. Refer to the function signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="query" type="str">
|
||||
Question
|
||||
</ParamField>
|
||||
<ParamField path="num_documents" type="int" optional>
|
||||
Number of relevant documents to fetch. Defaults to `3`
|
||||
</ParamField>
|
||||
<ParamField path="where" type="dict" optional>
|
||||
Key value pair for metadata filtering.
|
||||
</ParamField>
|
||||
<ParamField path="raw_filter" type="dict" optional>
|
||||
Pass raw filter query based on your vector database.
|
||||
Currently, `raw_filter` param is only supported for Pinecone vector database.
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="answer" type="dict">
|
||||
Return list of dictionaries that contain the relevant chunk and their source information.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic
|
||||
|
||||
Refer to the following example on how to use the search api:
|
||||
|
||||
```python Code example
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
context = app.search("What is the net worth of Elon?", num_documents=2)
|
||||
print(context)
|
||||
```
|
||||
|
||||
### Advanced
|
||||
|
||||
#### Metadata filtering using `where` params
|
||||
|
||||
Here is an advanced example of `search()` API with metadata filtering on pinecone database:
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
from embedchain import App
|
||||
|
||||
os.environ["PINECONE_API_KEY"] = "xxx"
|
||||
|
||||
config = {
|
||||
"vectordb": {
|
||||
"provider": "pinecone",
|
||||
"config": {
|
||||
"metric": "dotproduct",
|
||||
"vector_dimension": 1536,
|
||||
"index_name": "ec-test",
|
||||
"serverless_config": {"cloud": "aws", "region": "us-west-2"},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
|
||||
app.add("https://www.forbes.com/profile/bill-gates", metadata={"type": "forbes", "person": "gates"})
|
||||
app.add("https://en.wikipedia.org/wiki/Bill_Gates", metadata={"type": "wiki", "person": "gates"})
|
||||
|
||||
results = app.search("What is the net worth of Bill Gates?", where={"person": "gates"})
|
||||
print("Num of search results: ", len(results))
|
||||
```
|
||||
|
||||
#### Metadata filtering using `raw_filter` params
|
||||
|
||||
Following is an example of metadata filtering by passing the raw filter query that pinecone vector database follows:
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
from embedchain import App
|
||||
|
||||
os.environ["PINECONE_API_KEY"] = "xxx"
|
||||
|
||||
config = {
|
||||
"vectordb": {
|
||||
"provider": "pinecone",
|
||||
"config": {
|
||||
"metric": "dotproduct",
|
||||
"vector_dimension": 1536,
|
||||
"index_name": "ec-test",
|
||||
"serverless_config": {"cloud": "aws", "region": "us-west-2"},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
|
||||
app.add("https://www.forbes.com/profile/bill-gates", metadata={"year": 2022, "person": "gates"})
|
||||
app.add("https://en.wikipedia.org/wiki/Bill_Gates", metadata={"year": 2024, "person": "gates"})
|
||||
|
||||
print("Filter with person: gates and year > 2023")
|
||||
raw_filter = {"$and": [{"person": "gates"}, {"year": {"$gt": 2023}}]}
|
||||
results = app.search("What is the net worth of Bill Gates?", raw_filter=raw_filter)
|
||||
print("Num of search results: ", len(results))
|
||||
```
|
||||
54
embedchain/docs/api-reference/store/ai-assistants.mdx
Normal file
54
embedchain/docs/api-reference/store/ai-assistants.mdx
Normal file
@@ -0,0 +1,54 @@
|
||||
---
|
||||
title: 'AI Assistant'
|
||||
---
|
||||
|
||||
The `AIAssistant` class, an alternative to the OpenAI Assistant API, is designed for those who prefer using large language models (LLMs) other than those provided by OpenAI. It facilitates the creation of AI Assistants with several key benefits:
|
||||
|
||||
- **Visibility into Citations**: It offers transparent access to the sources and citations used by the AI, enhancing the understanding and trustworthiness of its responses.
|
||||
|
||||
- **Debugging Capabilities**: Users have the ability to delve into and debug the AI's processes, allowing for a deeper understanding and fine-tuning of its performance.
|
||||
|
||||
- **Customizable Prompts**: The class provides the flexibility to modify and tailor prompts according to specific needs, enabling more precise and relevant interactions.
|
||||
|
||||
- **Chain of Thought Integration**: It supports the incorporation of a 'chain of thought' approach, which helps in breaking down complex queries into simpler, sequential steps, thereby improving the clarity and accuracy of responses.
|
||||
|
||||
It is ideal for those who value customization, transparency, and detailed control over their AI Assistant's functionalities.
|
||||
|
||||
### Arguments
|
||||
|
||||
<ParamField path="name" type="string" optional>
|
||||
Name for your AI assistant
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="instructions" type="string" optional>
|
||||
How the Assistant and model should behave or respond
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="assistant_id" type="string" optional>
|
||||
Load existing AI Assistant. If you pass this, you don't have to pass other arguments.
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="thread_id" type="string" optional>
|
||||
Existing thread id if exists
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="yaml_path" type="str" Optional>
|
||||
Embedchain pipeline config yaml path to use. This will define the configuration of the AI Assistant (such as configuring the LLM, vector database, and embedding model)
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="data_sources" type="list" default="[]">
|
||||
Add data sources to your assistant. You can add in the following format: `[{"source": "https://example.com", "data_type": "web_page"}]`
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="collect_metrics" type="boolean" default="True">
|
||||
Anonymous telemetry (doesn't collect any user information or user's files). Used to improve the Embedchain package utilization. Default is `True`.
|
||||
</ParamField>
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
For detailed guidance on creating your own AI Assistant, click the link below. It provides step-by-step instructions to help you through the process:
|
||||
|
||||
<Card title="Guide to Creating Your AI Assistant" icon="link" href="/examples/opensource-assistant">
|
||||
Learn how to build a customized AI Assistant using the `AIAssistant` class.
|
||||
</Card>
|
||||
45
embedchain/docs/api-reference/store/openai-assistant.mdx
Normal file
45
embedchain/docs/api-reference/store/openai-assistant.mdx
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
title: 'OpenAI Assistant'
|
||||
---
|
||||
|
||||
### Arguments
|
||||
|
||||
<ParamField path="name" type="string">
|
||||
Name for your AI assistant
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="instructions" type="string">
|
||||
how the Assistant and model should behave or respond
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="assistant_id" type="string">
|
||||
Load existing OpenAI Assistant. If you pass this, you don't have to pass other arguments.
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="thread_id" type="string">
|
||||
Existing OpenAI thread id if exists
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="model" type="str" default="gpt-4-1106-preview">
|
||||
OpenAI model to use
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="tools" type="list">
|
||||
OpenAI tools to use. Default set to `[{"type": "retrieval"}]`
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="data_sources" type="list" default="[]">
|
||||
Add data sources to your assistant. You can add in the following format: `[{"source": "https://example.com", "data_type": "web_page"}]`
|
||||
</ParamField>
|
||||
|
||||
<ParamField path="telemetry" type="boolean" default="True">
|
||||
Anonymous telemetry (doesn't collect any user information or user's files). Used to improve the Embedchain package utilization. Default is `True`.
|
||||
</ParamField>
|
||||
|
||||
## Usage
|
||||
|
||||
For detailed guidance on creating your own OpenAI Assistant, click the link below. It provides step-by-step instructions to help you through the process:
|
||||
|
||||
<Card title="Guide to Creating Your OpenAI Assistant" icon="link" href="/examples/openai-assistant">
|
||||
Learn how to build an OpenAI Assistant using the `OpenAIAssistant` class.
|
||||
</Card>
|
||||
28
embedchain/docs/community/connect-with-us.mdx
Normal file
28
embedchain/docs/community/connect-with-us.mdx
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
title: 🤝 Connect with Us
|
||||
---
|
||||
|
||||
We believe in building a vibrant and supportive community around embedchain. There are various channels through which you can connect with us, stay updated, and contribute to the ongoing discussions:
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Twitter" icon="twitter" href="https://twitter.com/embedchain">
|
||||
Follow us on Twitter
|
||||
</Card>
|
||||
<Card title="Slack" icon="slack" href="https://embedchain.ai/slack" color="#4A154B">
|
||||
Join our slack community
|
||||
</Card>
|
||||
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
|
||||
Join our discord community
|
||||
</Card>
|
||||
<Card title="LinkedIn" icon="linkedin" href="https://www.linkedin.com/company/embedchain/">
|
||||
Connect with us on LinkedIn
|
||||
</Card>
|
||||
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
|
||||
Schedule a call with Embedchain founder
|
||||
</Card>
|
||||
<Card title="Newsletter" icon="message" href="https://embedchain.substack.com/">
|
||||
Subscribe to our newsletter
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
We look forward to connecting with you and seeing how we can create amazing things together!
|
||||
25
embedchain/docs/components/data-sources/audio.mdx
Normal file
25
embedchain/docs/components/data-sources/audio.mdx
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
title: "🎤 Audio"
|
||||
---
|
||||
|
||||
|
||||
To use an audio as data source, just add `data_type` as `audio` and pass in the path of the audio (local or hosted).
|
||||
|
||||
We use [Deepgram](https://developers.deepgram.com/docs/introduction) to transcribe the audiot to text, and then use the generated text as the data source.
|
||||
|
||||
You would require an Deepgram API key which is available [here](https://console.deepgram.com/signup?jump=keys) to use this feature.
|
||||
|
||||
### Without customization
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["DEEPGRAM_API_KEY"] = "153xxx"
|
||||
|
||||
app = App()
|
||||
app.add("introduction.wav", data_type="audio")
|
||||
response = app.query("What is my name and how old am I?")
|
||||
print(response)
|
||||
# Answer: Your name is Dave and you are 21 years old.
|
||||
```
|
||||
16
embedchain/docs/components/data-sources/beehiiv.mdx
Normal file
16
embedchain/docs/components/data-sources/beehiiv.mdx
Normal file
@@ -0,0 +1,16 @@
|
||||
---
|
||||
title: "🐝 Beehiiv"
|
||||
---
|
||||
|
||||
To add any Beehiiv data sources to your app, just add the base url as the source and set the data_type to `beehiiv`.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# source: just add the base url and set the data_type to 'beehiiv'
|
||||
app.add('https://aibreakfast.beehiiv.com', data_type='beehiiv')
|
||||
app.query("How much is OpenAI paying developers?")
|
||||
# Answer: OpenAI is aggressively recruiting Google's top AI researchers with offers ranging between $5 to $10 million annually, primarily in stock options.
|
||||
```
|
||||
28
embedchain/docs/components/data-sources/csv.mdx
Normal file
28
embedchain/docs/components/data-sources/csv.mdx
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
title: '📊 CSV'
|
||||
---
|
||||
|
||||
You can load any csv file from your local file system or through a URL. Headers are included for each line, so if you have an `age` column, `18` will be added as `age: 18`.
|
||||
|
||||
## Usage
|
||||
|
||||
### Load from a local file
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
app = App()
|
||||
app.add('/path/to/file.csv', data_type='csv')
|
||||
```
|
||||
|
||||
### Load from URL
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
app = App()
|
||||
app.add('https://people.sc.fsu.edu/~jburkardt/data/csv/airtravel.csv', data_type="csv")
|
||||
```
|
||||
|
||||
<Note>
|
||||
There is a size limit allowed for csv file beyond which it can throw error. This limit is set by the LLMs. Please consider chunking large csv files into smaller csv files.
|
||||
</Note>
|
||||
|
||||
42
embedchain/docs/components/data-sources/custom.mdx
Normal file
42
embedchain/docs/components/data-sources/custom.mdx
Normal file
@@ -0,0 +1,42 @@
|
||||
---
|
||||
title: '⚙️ Custom'
|
||||
---
|
||||
|
||||
When we say "custom", we mean that you can customize the loader and chunker to your needs. This is done by passing a custom loader and chunker to the `add` method.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
import your_loader
|
||||
from my_module import CustomLoader
|
||||
from my_module import CustomChunker
|
||||
|
||||
app = App()
|
||||
loader = CustomLoader()
|
||||
chunker = CustomChunker()
|
||||
|
||||
app.add("source", data_type="custom", loader=loader, chunker=chunker)
|
||||
```
|
||||
|
||||
<Note>
|
||||
The custom loader and chunker must be a class that inherits from the [`BaseLoader`](https://github.com/embedchain/embedchain/blob/main/embedchain/loaders/base_loader.py) and [`BaseChunker`](https://github.com/embedchain/embedchain/blob/main/embedchain/chunkers/base_chunker.py) classes respectively.
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
If the `data_type` is not a valid data type, the `add` method will fallback to the `custom` data type and expect a custom loader and chunker to be passed by the user.
|
||||
</Note>
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
from embedchain.loaders.github import GithubLoader
|
||||
|
||||
app = App()
|
||||
|
||||
loader = GithubLoader(config={"token": "ghp_xxx"})
|
||||
|
||||
app.add("repo:embedchain/embedchain type:repo", data_type="github", loader=loader)
|
||||
|
||||
app.query("What is Embedchain?")
|
||||
# Answer: Embedchain is a Data Platform for Large Language Models (LLMs). It allows users to seamlessly load, index, retrieve, and sync unstructured data in order to build dynamic, LLM-powered applications. There is also a JavaScript implementation called embedchain-js available on GitHub.
|
||||
```
|
||||
@@ -0,0 +1,85 @@
|
||||
---
|
||||
title: 'Data type handling'
|
||||
---
|
||||
|
||||
## Automatic data type detection
|
||||
|
||||
The add method automatically tries to detect the data_type, based on your input for the source argument. So `app.add('https://www.youtube.com/watch?v=dQw4w9WgXcQ')` is enough to embed a YouTube video.
|
||||
|
||||
This detection is implemented for all formats. It is based on factors such as whether it's a URL, a local file, the source data type, etc.
|
||||
|
||||
### Debugging automatic detection
|
||||
|
||||
Set `log_level: DEBUG` in the config yaml to debug if the data type detection is done right or not. Otherwise, you will not know when, for instance, an invalid filepath is interpreted as raw text instead.
|
||||
|
||||
### Forcing a data type
|
||||
|
||||
To omit any issues with the data type detection, you can **force** a data_type by adding it as a `add` method argument.
|
||||
The examples below show you the keyword to force the respective `data_type`.
|
||||
|
||||
Forcing can also be used for edge cases, such as interpreting a sitemap as a web_page, for reading its raw text instead of following links.
|
||||
|
||||
## Remote data types
|
||||
|
||||
<Tip>
|
||||
**Use local files in remote data types**
|
||||
|
||||
Some data_types are meant for remote content and only work with URLs.
|
||||
You can pass local files by formatting the path using the `file:` [URI scheme](https://en.wikipedia.org/wiki/File_URI_scheme), e.g. `file:///info.pdf`.
|
||||
</Tip>
|
||||
|
||||
## Reusing a vector database
|
||||
|
||||
Default behavior is to create a persistent vector db in the directory **./db**. You can split your application into two Python scripts: one to create a local vector db and the other to reuse this local persistent vector db. This is useful when you want to index hundreds of documents and separately implement a chat interface.
|
||||
|
||||
Create a local index:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"app": {
|
||||
"config": {
|
||||
"id": "app-1"
|
||||
}
|
||||
}
|
||||
}
|
||||
naval_chat_bot = App.from_config(config=config)
|
||||
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
|
||||
naval_chat_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf")
|
||||
```
|
||||
|
||||
You can reuse the local index with the same code, but without adding new documents:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"app": {
|
||||
"config": {
|
||||
"id": "app-1"
|
||||
}
|
||||
}
|
||||
}
|
||||
naval_chat_bot = App.from_config(config=config)
|
||||
print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?"))
|
||||
```
|
||||
|
||||
## Resetting an app and vector database
|
||||
|
||||
You can reset the app by simply calling the `reset` method. This will delete the vector database and all other app related files.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()config = {
|
||||
"app": {
|
||||
"config": {
|
||||
"id": "app-1"
|
||||
}
|
||||
}
|
||||
}
|
||||
naval_chat_bot = App.from_config(config=config)
|
||||
app.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
|
||||
app.reset()
|
||||
```
|
||||
41
embedchain/docs/components/data-sources/directory.mdx
Normal file
41
embedchain/docs/components/data-sources/directory.mdx
Normal file
@@ -0,0 +1,41 @@
|
||||
---
|
||||
title: '📁 Directory/Folder'
|
||||
---
|
||||
|
||||
To use an entire directory as data source, just add `data_type` as `directory` and pass in the path of the local directory.
|
||||
|
||||
### Without customization
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
app = App()
|
||||
app.add("./elon-musk", data_type="directory")
|
||||
response = app.query("list all files")
|
||||
print(response)
|
||||
# Answer: Files are elon-musk-1.txt, elon-musk-2.pdf.
|
||||
```
|
||||
|
||||
### Customization
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain.loaders.directory_loader import DirectoryLoader
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
lconfig = {
|
||||
"recursive": True,
|
||||
"extensions": [".txt"]
|
||||
}
|
||||
loader = DirectoryLoader(config=lconfig)
|
||||
app = App()
|
||||
app.add("./elon-musk", loader=loader)
|
||||
response = app.query("what are all the files related to?")
|
||||
print(response)
|
||||
|
||||
# Answer: The files are related to Elon Musk.
|
||||
```
|
||||
28
embedchain/docs/components/data-sources/discord.mdx
Normal file
28
embedchain/docs/components/data-sources/discord.mdx
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
title: "💬 Discord"
|
||||
---
|
||||
|
||||
To add any Discord channel messages to your app, just add the `channel_id` as the source and set the `data_type` to `discord`.
|
||||
|
||||
<Note>
|
||||
This loader requires a Discord bot token with read messages access.
|
||||
To obtain the token, follow the instructions provided in this tutorial:
|
||||
<a href="https://www.writebots.com/discord-bot-token/">How to Get a Discord Bot Token?</a>.
|
||||
</Note>
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# add your discord "BOT" token
|
||||
os.environ["DISCORD_TOKEN"] = "xxx"
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("1177296711023075338", data_type="discord")
|
||||
|
||||
response = app.query("What is Joe saying about Elon Musk?")
|
||||
|
||||
print(response)
|
||||
# Answer: Joe is saying "Elon Musk is a genius".
|
||||
```
|
||||
44
embedchain/docs/components/data-sources/discourse.mdx
Normal file
44
embedchain/docs/components/data-sources/discourse.mdx
Normal file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
title: '🗨️ Discourse'
|
||||
---
|
||||
|
||||
You can now easily load data from your community built with [Discourse](https://discourse.org/).
|
||||
|
||||
## Example
|
||||
|
||||
1. Setup the Discourse Loader with your community url.
|
||||
```Python
|
||||
from embedchain.loaders.discourse import DiscourseLoader
|
||||
|
||||
dicourse_loader = DiscourseLoader(config={"domain": "https://community.openai.com"})
|
||||
```
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above discourse loader
|
||||
```Python
|
||||
import os
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("openai after:2023-10-1", data_type="discourse", loader=dicourse_loader)
|
||||
|
||||
question = "Where can I find the OpenAI API status page?"
|
||||
app.query(question)
|
||||
# Answer: You can find the OpenAI API status page at https:/status.openai.com/.
|
||||
```
|
||||
|
||||
NOTE: The `add` function of the app will accept any executable search query to load data. Refer [Discourse API Docs](https://docs.discourse.org/#tag/Search) to learn more about search queries.
|
||||
|
||||
3. We automatically create a chunker to chunk your discourse data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
```Python
|
||||
|
||||
from embedchain.chunkers.discourse import DiscourseChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
discourse_chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
|
||||
discourse_chunker = DiscourseChunker(config=discourse_chunker_config)
|
||||
|
||||
app.add("openai", data_type='discourse', loader=dicourse_loader, chunker=discourse_chunker)
|
||||
```
|
||||
14
embedchain/docs/components/data-sources/docs-site.mdx
Normal file
14
embedchain/docs/components/data-sources/docs-site.mdx
Normal file
@@ -0,0 +1,14 @@
|
||||
---
|
||||
title: '📚 Code Docs website'
|
||||
---
|
||||
|
||||
To add any code documentation website as a loader, use the data_type as `docs_site`. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("https://docs.embedchain.ai/", data_type="docs_site")
|
||||
app.query("What is Embedchain?")
|
||||
# Answer: Embedchain is a platform that utilizes various components, including paid/proprietary ones, to provide what is believed to be the best configuration available. It uses LLM (Language Model) providers such as OpenAI, Anthpropic, Vertex_AI, GPT4ALL, Azure_OpenAI, LLAMA2, JINA, Ollama, Together and COHERE. Embedchain allows users to import and utilize these LLM providers for their applications.'
|
||||
```
|
||||
18
embedchain/docs/components/data-sources/docx.mdx
Normal file
18
embedchain/docs/components/data-sources/docx.mdx
Normal file
@@ -0,0 +1,18 @@
|
||||
---
|
||||
title: '📄 Docx file'
|
||||
---
|
||||
|
||||
### Docx file
|
||||
|
||||
To add any doc/docx file, use the data_type as `docx`. `docx` allows remote urls and conventional file paths. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add('https://example.com/content/intro.docx', data_type="docx")
|
||||
# Or add file using the local file path on your system
|
||||
# app.add('content/intro.docx', data_type="docx")
|
||||
|
||||
app.query("Summarize the docx data?")
|
||||
```
|
||||
37
embedchain/docs/components/data-sources/dropbox.mdx
Normal file
37
embedchain/docs/components/data-sources/dropbox.mdx
Normal file
@@ -0,0 +1,37 @@
|
||||
---
|
||||
title: '💾 Dropbox'
|
||||
---
|
||||
|
||||
To load folders or files from your Dropbox account, configure the `data_type` parameter as `dropbox` and specify the path to the desired file or folder, starting from the root directory of your Dropbox account.
|
||||
|
||||
For Dropbox access, an **access token** is required. Obtain this token by visiting [Dropbox Developer Apps](https://www.dropbox.com/developers/apps). There, create a new app and generate an access token for it.
|
||||
|
||||
Ensure your app has the following settings activated:
|
||||
|
||||
- In the Permissions section, enable `files.content.read` and `files.metadata.read`.
|
||||
|
||||
## Usage
|
||||
|
||||
Install the `dropbox` pypi package:
|
||||
|
||||
```bash
|
||||
pip install dropbox
|
||||
```
|
||||
|
||||
Following is an example of how to use the dropbox loader:
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["DROPBOX_ACCESS_TOKEN"] = "sl.xxx"
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
app = App()
|
||||
|
||||
# any path from the root of your dropbox account, you can leave it "" for the root folder
|
||||
app.add("/test", data_type="dropbox")
|
||||
|
||||
print(app.query("Which two celebrities are mentioned here?"))
|
||||
# The two celebrities mentioned in the given context are Elon Musk and Jeff Bezos.
|
||||
```
|
||||
18
embedchain/docs/components/data-sources/excel-file.mdx
Normal file
18
embedchain/docs/components/data-sources/excel-file.mdx
Normal file
@@ -0,0 +1,18 @@
|
||||
---
|
||||
title: '📄 Excel file'
|
||||
---
|
||||
|
||||
### Excel file
|
||||
|
||||
To add any xlsx/xls file, use the data_type as `excel_file`. `excel_file` allows remote urls and conventional file paths. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add('https://example.com/content/intro.xlsx', data_type="excel_file")
|
||||
# Or add file using the local file path on your system
|
||||
# app.add('content/intro.xls', data_type="excel_file")
|
||||
|
||||
app.query("Give brief information about data.")
|
||||
```
|
||||
52
embedchain/docs/components/data-sources/github.mdx
Normal file
52
embedchain/docs/components/data-sources/github.mdx
Normal file
@@ -0,0 +1,52 @@
|
||||
---
|
||||
title: 📝 Github
|
||||
---
|
||||
|
||||
1. Setup the Github loader by configuring the Github account with username and personal access token (PAT). Check out [this](https://docs.github.com/en/enterprise-server@3.6/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens#creating-a-personal-access-token) link to learn how to create a PAT.
|
||||
```Python
|
||||
from embedchain.loaders.github import GithubLoader
|
||||
|
||||
loader = GithubLoader(
|
||||
config={
|
||||
"token":"ghp_xxxx"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above Github loader
|
||||
```Python
|
||||
import os
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxxx"
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("repo:embedchain/embedchain type:repo", data_type="github", loader=loader)
|
||||
|
||||
response = app.query("What is Embedchain?")
|
||||
# Answer: Embedchain is a Data Platform for Large Language Models (LLMs). It allows users to seamlessly load, index, retrieve, and sync unstructured data in order to build dynamic, LLM-powered applications. There is also a JavaScript implementation called embedchain-js available on GitHub.
|
||||
```
|
||||
The `add` function of the app will accept any valid github query with qualifiers. It only supports loading github code, repository, issues and pull-requests.
|
||||
<Note>
|
||||
You must provide qualifiers `type:` and `repo:` in the query. The `type:` qualifier can be a combination of `code`, `repo`, `pr`, `issue`, `branch`, `file`. The `repo:` qualifier must be a valid github repository name.
|
||||
</Note>
|
||||
|
||||
<Card title="Valid queries" icon="lightbulb" iconType="duotone" color="#ca8b04">
|
||||
- `repo:embedchain/embedchain type:repo` - to load the repository
|
||||
- `repo:embedchain/embedchain type:branch name:feature_test` - to load the branch of the repository
|
||||
- `repo:embedchain/embedchain type:file path:README.md` - to load the specific file of the repository
|
||||
- `repo:embedchain/embedchain type:issue,pr` - to load the issues and pull-requests of the repository
|
||||
- `repo:embedchain/embedchain type:issue state:closed` - to load the closed issues of the repository
|
||||
</Card>
|
||||
|
||||
3. We automatically create a chunker to chunk your GitHub data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
```Python
|
||||
from embedchain.chunkers.common_chunker import CommonChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
github_chunker_config = ChunkerConfig(chunk_size=2000, chunk_overlap=0, length_function=len)
|
||||
github_chunker = CommonChunker(config=github_chunker_config)
|
||||
|
||||
app.add(load_query, data_type="github", loader=loader, chunker=github_chunker)
|
||||
```
|
||||
34
embedchain/docs/components/data-sources/gmail.mdx
Normal file
34
embedchain/docs/components/data-sources/gmail.mdx
Normal file
@@ -0,0 +1,34 @@
|
||||
---
|
||||
title: '📬 Gmail'
|
||||
---
|
||||
|
||||
To use GmailLoader you must install the extra dependencies with `pip install --upgrade embedchain[gmail]`.
|
||||
|
||||
The `source` must be a valid Gmail search query, you can refer `https://support.google.com/mail/answer/7190?hl=en` to build a query.
|
||||
|
||||
To load Gmail messages, you MUST use the data_type as `gmail`. Otherwise the source will be detected as simple `text`.
|
||||
|
||||
To use this you need to save `credentials.json` in the directory from where you will run the loader. Follow these steps to get the credentials
|
||||
|
||||
1. Go to the [Google Cloud Console](https://console.cloud.google.com/apis/credentials).
|
||||
2. Create a project if you don't have one already.
|
||||
3. Create an `OAuth Consent Screen` in the project. You may need to select the `external` option.
|
||||
4. Make sure the consent screen is published.
|
||||
5. Enable the [Gmail API](https://console.cloud.google.com/apis/api/gmail.googleapis.com)
|
||||
6. Create credentials from the `Credentials` tab.
|
||||
7. Select the type `OAuth Client ID`.
|
||||
8. Choose the application type `Web application`. As a name you can choose `embedchain` or any other name as per your use case.
|
||||
9. Add an authorized redirect URI for `http://localhost:8080/`.
|
||||
10. You can leave everything else at default, finish the creation.
|
||||
11. When you are done, a modal opens where you can download the details in `json` format.
|
||||
12. Put the `.json` file in your current directory and rename it to `credentials.json`
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
gmail_filter = "to: me label:inbox"
|
||||
app.add(gmail_filter, data_type="gmail")
|
||||
app.query("Summarize my email conversations")
|
||||
```
|
||||
28
embedchain/docs/components/data-sources/google-drive.mdx
Normal file
28
embedchain/docs/components/data-sources/google-drive.mdx
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
title: 'Google Drive'
|
||||
---
|
||||
|
||||
To use GoogleDriveLoader you must install the extra dependencies with `pip install --upgrade embedchain[googledrive]`.
|
||||
|
||||
The data_type must be `google_drive`. Otherwise, it will be considered a regular web page.
|
||||
|
||||
Google Drive requires the setup of credentials. This can be done by following the steps below:
|
||||
|
||||
1. Go to the [Google Cloud Console](https://console.cloud.google.com/apis/credentials).
|
||||
2. Create a project if you don't have one already.
|
||||
3. Enable the [Google Drive API](https://console.cloud.google.com/flows/enableapi?apiid=drive.googleapis.com)
|
||||
4. [Authorize credentials for desktop app](https://developers.google.com/drive/api/quickstart/python#authorize_credentials_for_a_desktop_application)
|
||||
5. When done, you will be able to download the credentials in `json` format. Rename the downloaded file to `credentials.json` and save it in `~/.credentials/credentials.json`
|
||||
6. Set the environment variable `GOOGLE_APPLICATION_CREDENTIALS=~/.credentials/credentials.json`
|
||||
|
||||
The first time you use the loader, you will be prompted to enter your Google account credentials.
|
||||
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
url = "https://drive.google.com/drive/u/0/folders/xxx-xxx"
|
||||
app.add(url, data_type="google_drive")
|
||||
```
|
||||
45
embedchain/docs/components/data-sources/image.mdx
Normal file
45
embedchain/docs/components/data-sources/image.mdx
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
title: "🖼️ Image"
|
||||
---
|
||||
|
||||
|
||||
To use an image as data source, just add `data_type` as `image` and pass in the path of the image (local or hosted).
|
||||
|
||||
We use [GPT4 Vision](https://platform.openai.com/docs/guides/vision) to generate meaning of the image using a custom prompt, and then use the generated text as the data source.
|
||||
|
||||
You would require an OpenAI API key with access to `gpt-4-vision-preview` model to use this feature.
|
||||
|
||||
### Without customization
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
app = App()
|
||||
app.add("./Elon-Musk.webp", data_type="image")
|
||||
response = app.query("Describe the man in the image.")
|
||||
print(response)
|
||||
# Answer: The man in the image is dressed in formal attire, wearing a dark suit jacket and a white collared shirt. He has short hair and is standing. He appears to be gazing off to the side with a reflective expression. The background is dark with faint, warm-toned vertical lines, possibly from a lit environment behind the individual or reflections. The overall atmosphere is somewhat moody and introspective.
|
||||
```
|
||||
|
||||
### Customization
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain.loaders.image import ImageLoader
|
||||
|
||||
image_loader = ImageLoader(
|
||||
max_tokens=100,
|
||||
api_key="sk-xxx",
|
||||
prompt="Is the person looking wealthy? Structure your thoughts around what you see in the image.",
|
||||
)
|
||||
|
||||
app = App()
|
||||
app.add("./Elon-Musk.webp", data_type="image", loader=image_loader)
|
||||
response = app.query("Describe the man in the image.")
|
||||
print(response)
|
||||
# Answer: The man in the image appears to be well-dressed in a suit and shirt, suggesting that he may be in a professional or formal setting. His composed demeanor and confident posture further indicate a sense of self-assurance. Based on these visual cues, one could infer that the man may have a certain level of economic or social status, possibly indicating wealth or professional success.
|
||||
```
|
||||
44
embedchain/docs/components/data-sources/json.mdx
Normal file
44
embedchain/docs/components/data-sources/json.mdx
Normal file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
title: '📃 JSON'
|
||||
---
|
||||
|
||||
To add any json file, use the data_type as `json`. Headers are included for each line, so for example if you have a json like `{"age": 18}`, then it will be added as `age: 18`.
|
||||
|
||||
Here are the supported sources for loading `json`:
|
||||
|
||||
```
|
||||
1. URL - valid url to json file that ends with ".json" extension.
|
||||
2. Local file - valid url to local json file that ends with ".json" extension.
|
||||
3. String - valid json string (e.g. - app.add('{"foo": "bar"}'))
|
||||
```
|
||||
|
||||
<Tip>
|
||||
If you would like to add other data structures (e.g. list, dict etc.), convert it to a valid json first using `json.dumps()` function.
|
||||
</Tip>
|
||||
|
||||
## Example
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# Add json file
|
||||
app.add("temp.json")
|
||||
|
||||
app.query("What is the net worth of Elon Musk as of October 2023?")
|
||||
# As of October 2023, Elon Musk's net worth is $255.2 billion.
|
||||
```
|
||||
|
||||
|
||||
```json temp.json
|
||||
{
|
||||
"question": "What is your net worth, Elon Musk?",
|
||||
"answer": "As of October 2023, Elon Musk's net worth is $255.2 billion, making him one of the wealthiest individuals in the world."
|
||||
}
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
14
embedchain/docs/components/data-sources/mdx.mdx
Normal file
14
embedchain/docs/components/data-sources/mdx.mdx
Normal file
@@ -0,0 +1,14 @@
|
||||
---
|
||||
title: '📝 Mdx file'
|
||||
---
|
||||
|
||||
To add any `.mdx` file to your app, use the data_type (first argument to `.add()` method) as `mdx`. Note that this supports support mdx file present on machine, so this should be a file path. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add('path/to/file.mdx', data_type='mdx')
|
||||
|
||||
app.query("What are the docs about?")
|
||||
```
|
||||
47
embedchain/docs/components/data-sources/mysql.mdx
Normal file
47
embedchain/docs/components/data-sources/mysql.mdx
Normal file
@@ -0,0 +1,47 @@
|
||||
---
|
||||
title: '🐬 MySQL'
|
||||
---
|
||||
|
||||
1. Setup the MySQL loader by configuring the SQL db.
|
||||
```Python
|
||||
from embedchain.loaders.mysql import MySQLLoader
|
||||
|
||||
config = {
|
||||
"host": "host",
|
||||
"port": "port",
|
||||
"database": "database",
|
||||
"user": "username",
|
||||
"password": "password",
|
||||
}
|
||||
|
||||
mysql_loader = MySQLLoader(config=config)
|
||||
```
|
||||
|
||||
For more details on how to setup with valid config, check MySQL [documentation](https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html).
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above MySQL loader
|
||||
```Python
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("SELECT * FROM table_name;", data_type='mysql', loader=mysql_loader)
|
||||
# Adds `(1, 'What is your net worth, Elon Musk?', "As of October 2023, Elon Musk's net worth is $255.2 billion.")`
|
||||
|
||||
response = app.query(question)
|
||||
# Answer: As of October 2023, Elon Musk's net worth is $255.2 billion.
|
||||
```
|
||||
|
||||
NOTE: The `add` function of the app will accept any executable query to load data. DO NOT pass the `CREATE`, `INSERT` queries in `add` function.
|
||||
|
||||
3. We automatically create a chunker to chunk your SQL data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
``Python
|
||||
|
||||
from embedchain.chunkers.mysql import MySQLChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
mysql_chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
|
||||
mysql_chunker = MySQLChunker(config=mysql_chunker_config)
|
||||
|
||||
app.add("SELECT * FROM table_name;", data_type='mysql', loader=mysql_loader, chunker=mysql_chunker)
|
||||
```
|
||||
20
embedchain/docs/components/data-sources/notion.mdx
Normal file
20
embedchain/docs/components/data-sources/notion.mdx
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
title: '📓 Notion'
|
||||
---
|
||||
|
||||
To use notion you must install the extra dependencies with `pip install --upgrade embedchain[community]`.
|
||||
|
||||
To load a notion page, use the data_type as `notion`. Since it is hard to automatically detect, it is advised to specify the `data_type` when adding a notion document.
|
||||
The next argument must **end** with the `notion page id`. The id is a 32-character string. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("cfbc134ca6464fc980d0391613959196", data_type="notion")
|
||||
app.add("my-page-cfbc134ca6464fc980d0391613959196", data_type="notion")
|
||||
app.add("https://www.notion.so/my-page-cfbc134ca6464fc980d0391613959196", data_type="notion")
|
||||
|
||||
app.query("Summarize the notion doc")
|
||||
```
|
||||
22
embedchain/docs/components/data-sources/openapi.mdx
Normal file
22
embedchain/docs/components/data-sources/openapi.mdx
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
title: 🙌 OpenAPI
|
||||
---
|
||||
|
||||
To add any OpenAPI spec yaml file (currently the json file will be detected as JSON data type), use the data_type as 'openapi'. 'openapi' allows remote urls and conventional file paths.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("https://github.com/openai/openai-openapi/blob/master/openapi.yaml", data_type="openapi")
|
||||
# Or add using the local file path
|
||||
# app.add("configs/openai_openapi.yaml", data_type="openapi")
|
||||
|
||||
app.query("What can OpenAI API endpoint do? Can you list the things it can learn from?")
|
||||
# Answer: The OpenAI API endpoint allows users to interact with OpenAI's models and perform various tasks such as generating text, answering questions, summarizing documents, translating languages, and more. The specific capabilities and tasks that the API can learn from may vary depending on the models and features provided by OpenAI. For more detailed information, it is recommended to refer to the OpenAI API documentation at https://platform.openai.com/docs/api-reference.
|
||||
```
|
||||
|
||||
<Note>
|
||||
The yaml file added to the App must have the required OpenAPI fields otherwise the adding OpenAPI spec will fail. Please refer to [OpenAPI Spec Doc](https://spec.openapis.org/oas/v3.1.0)
|
||||
</Note>
|
||||
43
embedchain/docs/components/data-sources/overview.mdx
Normal file
43
embedchain/docs/components/data-sources/overview.mdx
Normal file
@@ -0,0 +1,43 @@
|
||||
---
|
||||
title: Overview
|
||||
---
|
||||
|
||||
Embedchain comes with built-in support for various data sources. We handle the complexity of loading unstructured data from these data sources, allowing you to easily customize your app through a user-friendly interface.
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="PDF file" href="/components/data-sources/pdf-file"></Card>
|
||||
<Card title="CSV file" href="/components/data-sources/csv"></Card>
|
||||
<Card title="JSON file" href="/components/data-sources/json"></Card>
|
||||
<Card title="Text" href="/components/data-sources/text"></Card>
|
||||
<Card title="Text File" href="/components/data-sources/text-file"></Card>
|
||||
<Card title="Directory" href="/components/data-sources/directory"></Card>
|
||||
<Card title="Web page" href="/components/data-sources/web-page"></Card>
|
||||
<Card title="Youtube Channel" href="/components/data-sources/youtube-channel"></Card>
|
||||
<Card title="Youtube Video" href="/components/data-sources/youtube-video"></Card>
|
||||
<Card title="Docs website" href="/components/data-sources/docs-site"></Card>
|
||||
<Card title="MDX file" href="/components/data-sources/mdx"></Card>
|
||||
<Card title="DOCX file" href="/components/data-sources/docx"></Card>
|
||||
<Card title="Notion" href="/components/data-sources/notion"></Card>
|
||||
<Card title="Sitemap" href="/components/data-sources/sitemap"></Card>
|
||||
<Card title="XML file" href="/components/data-sources/xml"></Card>
|
||||
<Card title="Q&A pair" href="/components/data-sources/qna"></Card>
|
||||
<Card title="OpenAPI" href="/components/data-sources/openapi"></Card>
|
||||
<Card title="Gmail" href="/components/data-sources/gmail"></Card>
|
||||
<Card title="Google Drive" href="/components/data-sources/google-drive"></Card>
|
||||
<Card title="GitHub" href="/components/data-sources/github"></Card>
|
||||
<Card title="Postgres" href="/components/data-sources/postgres"></Card>
|
||||
<Card title="MySQL" href="/components/data-sources/mysql"></Card>
|
||||
<Card title="Slack" href="/components/data-sources/slack"></Card>
|
||||
<Card title="Discord" href="/components/data-sources/discord"></Card>
|
||||
<Card title="Discourse" href="/components/data-sources/discourse"></Card>
|
||||
<Card title="Substack" href="/components/data-sources/substack"></Card>
|
||||
<Card title="Beehiiv" href="/components/data-sources/beehiiv"></Card>
|
||||
<Card title="Dropbox" href="/components/data-sources/dropbox"></Card>
|
||||
<Card title="Image" href="/components/data-sources/image"></Card>
|
||||
<Card title="Audio" href="/components/data-sources/audio"></Card>
|
||||
<Card title="Custom" href="/components/data-sources/custom"></Card>
|
||||
</CardGroup>
|
||||
|
||||
<br/ >
|
||||
|
||||
<Snippet file="missing-data-source-tip.mdx" />
|
||||
43
embedchain/docs/components/data-sources/pdf-file.mdx
Normal file
43
embedchain/docs/components/data-sources/pdf-file.mdx
Normal file
@@ -0,0 +1,43 @@
|
||||
---
|
||||
title: '📰 PDF'
|
||||
---
|
||||
|
||||
You can load any pdf file from your local file system or through a URL.
|
||||
|
||||
## Usage
|
||||
|
||||
### Load from a local file
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
app = App()
|
||||
app.add('/path/to/file.pdf', data_type='pdf_file')
|
||||
```
|
||||
|
||||
### Load from URL
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
app = App()
|
||||
app.add('https://arxiv.org/pdf/1706.03762.pdf', data_type='pdf_file')
|
||||
app.query("What is the paper 'attention is all you need' about?", citations=True)
|
||||
# Answer: The paper "Attention Is All You Need" proposes a new network architecture called the Transformer, which is based solely on attention mechanisms. It suggests that complex recurrent or convolutional neural networks can be replaced with a simpler architecture that connects the encoder and decoder through attention. The paper discusses how this approach can improve sequence transduction models, such as neural machine translation.
|
||||
# Contexts:
|
||||
# [
|
||||
# (
|
||||
# 'Provided proper attribution is ...',
|
||||
# {
|
||||
# 'page': 0,
|
||||
# 'url': 'https://arxiv.org/pdf/1706.03762.pdf',
|
||||
# 'score': 0.3676220203221626,
|
||||
# ...
|
||||
# }
|
||||
# ),
|
||||
# ]
|
||||
```
|
||||
|
||||
We also store the page number under the key `page` with each chunk that helps understand where the answer is coming from. You can fetch the `page` key while during retrieval (refer to the example given above).
|
||||
|
||||
<Note>
|
||||
Note that we do not support password protected pdf files.
|
||||
</Note>
|
||||
64
embedchain/docs/components/data-sources/postgres.mdx
Normal file
64
embedchain/docs/components/data-sources/postgres.mdx
Normal file
@@ -0,0 +1,64 @@
|
||||
---
|
||||
title: '🐘 Postgres'
|
||||
---
|
||||
|
||||
1. Setup the Postgres loader by configuring the postgres db.
|
||||
```Python
|
||||
from embedchain.loaders.postgres import PostgresLoader
|
||||
|
||||
config = {
|
||||
"host": "host_address",
|
||||
"port": "port_number",
|
||||
"dbname": "database_name",
|
||||
"user": "username",
|
||||
"password": "password",
|
||||
}
|
||||
|
||||
"""
|
||||
config = {
|
||||
"url": "your_postgres_url"
|
||||
}
|
||||
"""
|
||||
|
||||
postgres_loader = PostgresLoader(config=config)
|
||||
|
||||
```
|
||||
|
||||
You can either setup the loader by passing the postgresql url or by providing the config data.
|
||||
For more details on how to setup with valid url and config, check postgres [documentation](https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING:~:text=34.1.1.%C2%A0Connection%20Strings-,%23,-Several%20libpq%20functions).
|
||||
|
||||
NOTE: if you provide the `url` field in config, all other fields will be ignored.
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above postgres loader
|
||||
```Python
|
||||
import os
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
app = App()
|
||||
|
||||
question = "What is Elon Musk's networth?"
|
||||
response = app.query(question)
|
||||
# Answer: As of September 2021, Elon Musk's net worth is estimated to be around $250 billion, making him one of the wealthiest individuals in the world. However, please note that net worth can fluctuate over time due to various factors such as stock market changes and business ventures.
|
||||
|
||||
app.add("SELECT * FROM table_name;", data_type='postgres', loader=postgres_loader)
|
||||
# Adds `(1, 'What is your net worth, Elon Musk?', "As of October 2023, Elon Musk's net worth is $255.2 billion.")`
|
||||
|
||||
response = app.query(question)
|
||||
# Answer: As of October 2023, Elon Musk's net worth is $255.2 billion.
|
||||
```
|
||||
|
||||
NOTE: The `add` function of the app will accept any executable query to load data. DO NOT pass the `CREATE`, `INSERT` queries in `add` function as they will result in not adding any data, so it is pointless.
|
||||
|
||||
3. We automatically create a chunker to chunk your postgres data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
```Python
|
||||
|
||||
from embedchain.chunkers.postgres import PostgresChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
postgres_chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
|
||||
postgres_chunker = PostgresChunker(config=postgres_chunker_config)
|
||||
|
||||
app.add("SELECT * FROM table_name;", data_type='postgres', loader=postgres_loader, chunker=postgres_chunker)
|
||||
```
|
||||
13
embedchain/docs/components/data-sources/qna.mdx
Normal file
13
embedchain/docs/components/data-sources/qna.mdx
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
title: '❓💬 Question and answer pair'
|
||||
---
|
||||
|
||||
QnA pair is a local data type. To supply your own QnA pair, use the data_type as `qna_pair` and enter a tuple. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add(("Question", "Answer"), data_type="qna_pair")
|
||||
```
|
||||
13
embedchain/docs/components/data-sources/sitemap.mdx
Normal file
13
embedchain/docs/components/data-sources/sitemap.mdx
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
title: '🗺️ Sitemap'
|
||||
---
|
||||
|
||||
Add all web pages from an xml-sitemap. Filters non-text files. Use the data_type as `sitemap`. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add('https://example.com/sitemap.xml', data_type='sitemap')
|
||||
```
|
||||
71
embedchain/docs/components/data-sources/slack.mdx
Normal file
71
embedchain/docs/components/data-sources/slack.mdx
Normal file
@@ -0,0 +1,71 @@
|
||||
---
|
||||
title: '🤖 Slack'
|
||||
---
|
||||
|
||||
## Pre-requisite
|
||||
- Download required packages by running `pip install --upgrade "embedchain[slack]"`.
|
||||
- Configure your slack bot token as environment variable `SLACK_USER_TOKEN`.
|
||||
- Find your user token on your [Slack Account](https://api.slack.com/authentication/token-types)
|
||||
- Make sure your slack user token includes [search](https://api.slack.com/scopes/search:read) scope.
|
||||
|
||||
## Example
|
||||
|
||||
### Get Started
|
||||
|
||||
This will automatically retrieve data from the workspace associated with the user's token.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["SLACK_USER_TOKEN"] = "xoxp-xxx"
|
||||
app = App()
|
||||
|
||||
app.add("in:general", data_type="slack")
|
||||
|
||||
result = app.query("what are the messages in general channel?")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
### Customize your SlackLoader
|
||||
1. Setup the Slack loader by configuring the Slack Webclient.
|
||||
```Python
|
||||
from embedchain.loaders.slack import SlackLoader
|
||||
|
||||
os.environ["SLACK_USER_TOKEN"] = "xoxp-*"
|
||||
|
||||
config = {
|
||||
'base_url': slack_app_url,
|
||||
'headers': web_headers,
|
||||
'team_id': slack_team_id,
|
||||
}
|
||||
|
||||
loader = SlackLoader(config)
|
||||
```
|
||||
|
||||
NOTE: you can also pass the `config` with `base_url`, `headers`, `team_id` to setup your SlackLoader.
|
||||
|
||||
2. Once you setup the loader, you can create an app and load data using the above slack loader
|
||||
```Python
|
||||
import os
|
||||
from embedchain.pipeline import Pipeline as App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add("in:random", data_type="slack", loader=loader)
|
||||
question = "Which bots are available in the slack workspace's random channel?"
|
||||
# Answer: The available bot in the slack workspace's random channel is the Embedchain bot.
|
||||
```
|
||||
|
||||
3. We automatically create a chunker to chunk your slack data, however if you wish to provide your own chunker class. Here is how you can do that:
|
||||
```Python
|
||||
from embedchain.chunkers.slack import SlackChunker
|
||||
from embedchain.config.add_config import ChunkerConfig
|
||||
|
||||
slack_chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
|
||||
slack_chunker = SlackChunker(config=slack_chunker_config)
|
||||
|
||||
app.add(slack_chunker, data_type="slack", loader=loader, chunker=slack_chunker)
|
||||
```
|
||||
16
embedchain/docs/components/data-sources/substack.mdx
Normal file
16
embedchain/docs/components/data-sources/substack.mdx
Normal file
@@ -0,0 +1,16 @@
|
||||
---
|
||||
title: "📝 Substack"
|
||||
---
|
||||
|
||||
To add any Substack data sources to your app, just add the main base url as the source and set the data_type to `substack`.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# source: for any substack just add the root URL
|
||||
app.add('https://www.lennysnewsletter.com', data_type='substack')
|
||||
app.query("Who is Brian Chesky?")
|
||||
# Answer: Brian Chesky is the co-founder and CEO of Airbnb.
|
||||
```
|
||||
14
embedchain/docs/components/data-sources/text-file.mdx
Normal file
14
embedchain/docs/components/data-sources/text-file.mdx
Normal file
@@ -0,0 +1,14 @@
|
||||
---
|
||||
title: '📄 Text file'
|
||||
---
|
||||
|
||||
To add a .txt file, specify the data_type as `text_file`. The URL provided in the first parameter of the `add` function, should be a local path. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add('path/to/file.txt', data_type="text_file")
|
||||
|
||||
app.query("Summarize the information of the text file")
|
||||
```
|
||||
17
embedchain/docs/components/data-sources/text.mdx
Normal file
17
embedchain/docs/components/data-sources/text.mdx
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
title: '📝 Text'
|
||||
---
|
||||
|
||||
### Text
|
||||
|
||||
Text is a local data type. To supply your own text, use the data_type as `text` and enter a string. The text is not processed, this can be very versatile. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add('Seek wealth, not money or status. Wealth is having assets that earn while you sleep. Money is how we transfer time and wealth. Status is your place in the social hierarchy.', data_type='text')
|
||||
```
|
||||
|
||||
Note: This is not used in the examples because in most cases you will supply a whole paragraph or file, which did not fit.
|
||||
13
embedchain/docs/components/data-sources/web-page.mdx
Normal file
13
embedchain/docs/components/data-sources/web-page.mdx
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
title: '🌐 HTML Web page'
|
||||
---
|
||||
|
||||
To add any web page, use the data_type as `web_page`. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add('a_valid_web_page_url', data_type='web_page')
|
||||
```
|
||||
17
embedchain/docs/components/data-sources/xml.mdx
Normal file
17
embedchain/docs/components/data-sources/xml.mdx
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
title: '🧾 XML file'
|
||||
---
|
||||
|
||||
### XML file
|
||||
|
||||
To add any xml file, use the data_type as `xml`. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
app.add('content/data.xml')
|
||||
```
|
||||
|
||||
Note: Only the text content of the xml file will be added to the app. The tags will be ignored.
|
||||
22
embedchain/docs/components/data-sources/youtube-channel.mdx
Normal file
22
embedchain/docs/components/data-sources/youtube-channel.mdx
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
title: '📽️ Youtube Channel'
|
||||
---
|
||||
|
||||
## Setup
|
||||
|
||||
Make sure you have all the required packages installed before using this data type. You can install them by running the following command in your terminal.
|
||||
|
||||
```bash
|
||||
pip install -U "embedchain[youtube]"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
To add all the videos from a youtube channel to your app, use the data_type as `youtube_channel`.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add("@channel_name", data_type="youtube_channel")
|
||||
```
|
||||
22
embedchain/docs/components/data-sources/youtube-video.mdx
Normal file
22
embedchain/docs/components/data-sources/youtube-video.mdx
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
title: '📺 Youtube Video'
|
||||
---
|
||||
|
||||
## Setup
|
||||
|
||||
Make sure you have all the required packages installed before using this data type. You can install them by running the following command in your terminal.
|
||||
|
||||
```bash
|
||||
pip install -U "embedchain[youtube]"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
To add any youtube video to your app, use the data_type as `youtube_video`. Eg:
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
app.add('a_valid_youtube_url_here', data_type='youtube_video')
|
||||
```
|
||||
438
embedchain/docs/components/embedding-models.mdx
Normal file
438
embedchain/docs/components/embedding-models.mdx
Normal file
@@ -0,0 +1,438 @@
|
||||
---
|
||||
title: 🧩 Embedding models
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Embedchain supports several embedding models from the following providers:
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="OpenAI" href="#openai"></Card>
|
||||
<Card title="GoogleAI" href="#google-ai"></Card>
|
||||
<Card title="Azure OpenAI" href="#azure-openai"></Card>
|
||||
<Card title="GPT4All" href="#gpt4all"></Card>
|
||||
<Card title="Hugging Face" href="#hugging-face"></Card>
|
||||
<Card title="Vertex AI" href="#vertex-ai"></Card>
|
||||
<Card title="NVIDIA AI" href="#nvidia-ai"></Card>
|
||||
<Card title="Cohere" href="#cohere"></Card>
|
||||
<Card title="Ollama" href="#ollama"></Card>
|
||||
<Card title="Clarifai" href="#clarifai"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## OpenAI
|
||||
|
||||
To use OpenAI embedding function, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
|
||||
|
||||
Once you have obtained the key, you can use it like this:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
app.add("https://en.wikipedia.org/wiki/OpenAI")
|
||||
app.query("What is OpenAI?")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-3-small'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
* OpenAI announced two new embedding models: `text-embedding-3-small` and `text-embedding-3-large`. Embedchain supports both these models. Below you can find YAML config for both:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```yaml text-embedding-3-small.yaml
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-3-small'
|
||||
```
|
||||
|
||||
```yaml text-embedding-3-large.yaml
|
||||
embedder:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'text-embedding-3-large'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Google AI
|
||||
|
||||
To use Google AI embedding function, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["GOOGLE_API_KEY"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
embedder:
|
||||
provider: google
|
||||
config:
|
||||
model: 'models/embedding-001'
|
||||
task_type: "retrieval_document"
|
||||
title: "Embeddings for Embedchain"
|
||||
```
|
||||
</CodeGroup>
|
||||
<br/>
|
||||
<Note>
|
||||
For more details regarding the Google AI embedding model, please refer to the [Google AI documentation](https://ai.google.dev/tutorials/python_quickstart#use_embeddings).
|
||||
</Note>
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
To use Azure OpenAI embedding model, you have to set some of the azure openai related environment variables as given in the code block below:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://xxx.openai.azure.com/"
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = "xxx"
|
||||
os.environ["OPENAI_API_VERSION"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: gpt-35-turbo
|
||||
deployment_name: your_llm_deployment_name
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: text-embedding-ada-002
|
||||
deployment_name: you_embedding_model_deployment_name
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
|
||||
|
||||
## GPT4ALL
|
||||
|
||||
GPT4All supports generating high quality embeddings of arbitrary length documents of text using a CPU optimized contrastively trained Sentence Transformer.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Hugging Face
|
||||
|
||||
Hugging Face supports generating embeddings of arbitrary length documents of text using Sentence Transformer library. Example of how to generate embeddings using hugging face is given below:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'google/flan-t5-xxl'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 0.5
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'sentence-transformers/all-mpnet-base-v2'
|
||||
model_kwargs:
|
||||
trust_remote_code: True # Only use if you trust your embedder
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Vertex AI
|
||||
|
||||
Embedchain supports Google's VertexAI embeddings model through a simple interface. You just have to pass the `model_name` in the config yaml and it would work out of the box.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: vertexai
|
||||
config:
|
||||
model: 'chat-bison'
|
||||
temperature: 0.5
|
||||
top_p: 0.5
|
||||
|
||||
embedder:
|
||||
provider: vertexai
|
||||
config:
|
||||
model: 'textembedding-gecko'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## NVIDIA AI
|
||||
|
||||
[NVIDIA AI Foundation Endpoints](https://www.nvidia.com/en-us/ai-data-science/foundation-models/) let you quickly use NVIDIA's AI models, such as Mixtral 8x7B, Llama 2 etc, through our API. These models are available in the [NVIDIA NGC catalog](https://catalog.ngc.nvidia.com/ai-foundation-models), fully optimized and ready to use on NVIDIA's AI platform. They are designed for high speed and easy customization, ensuring smooth performance on any accelerated setup.
|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
In order to use embedding models and LLMs from NVIDIA AI, create an account on [NVIDIA NGC Service](https://catalog.ngc.nvidia.com/).
|
||||
|
||||
Generate an API key from their dashboard. Set the API key as `NVIDIA_API_KEY` environment variable. Note that the `NVIDIA_API_KEY` will start with `nvapi-`.
|
||||
|
||||
Below is an example of how to use LLM model and embedding model from NVIDIA AI:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['NVIDIA_API_KEY'] = 'nvapi-xxxx'
|
||||
|
||||
config = {
|
||||
"app": {
|
||||
"config": {
|
||||
"id": "my-app",
|
||||
},
|
||||
},
|
||||
"llm": {
|
||||
"provider": "nvidia",
|
||||
"config": {
|
||||
"model": "nemotron_steerlm_8b",
|
||||
},
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "nvidia",
|
||||
"config": {
|
||||
"model": "nvolveqa_40k",
|
||||
"vector_dimension": 1024,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
answer = app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk is subject to fluctuations based on the market value of his holdings in various companies.
|
||||
# As of March 1, 2024, his net worth is estimated to be approximately $210 billion. However, this figure can change rapidly due to stock market fluctuations and other factors.
|
||||
# Additionally, his net worth may include other assets such as real estate and art, which are not reflected in his stock portfolio.
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## Cohere
|
||||
|
||||
To use embedding models and LLMs from COHERE, create an account on [COHERE](https://dashboard.cohere.com/welcome/login?redirect_uri=%2Fapi-keys).
|
||||
|
||||
Generate an API key from their dashboard. Set the API key as `COHERE_API_KEY` environment variable.
|
||||
|
||||
Once you have obtained the key, you can use it like this:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['COHERE_API_KEY'] = 'xxx'
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-english-light-v3.0'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
* Cohere has few embedding models: `embed-english-v3.0`, `embed-multilingual-v3.0`, `embed-multilingual-light-v3.0`, `embed-english-v2.0`, `embed-english-light-v2.0` and `embed-multilingual-v2.0`. Embedchain supports all these models. Below you can find YAML config for all:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```yaml embed-english-v3.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-english-v3.0'
|
||||
vector_dimension: 1024
|
||||
```
|
||||
|
||||
```yaml embed-multilingual-v3.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-multilingual-v3.0'
|
||||
vector_dimension: 1024
|
||||
```
|
||||
|
||||
```yaml embed-multilingual-light-v3.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-multilingual-light-v3.0'
|
||||
vector_dimension: 384
|
||||
```
|
||||
|
||||
```yaml embed-english-v2.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-english-v2.0'
|
||||
vector_dimension: 4096
|
||||
```
|
||||
|
||||
```yaml embed-english-light-v2.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-english-light-v2.0'
|
||||
vector_dimension: 1024
|
||||
```
|
||||
|
||||
```yaml embed-multilingual-v2.0.yaml
|
||||
embedder:
|
||||
provider: cohere
|
||||
config:
|
||||
model: 'embed-multilingual-v2.0'
|
||||
vector_dimension: 768
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Ollama
|
||||
|
||||
Ollama enables the use of embedding models, allowing you to generate high-quality embeddings directly on your local machine. Make sure to install [Ollama](https://ollama.com/download) and keep it running before using the embedding model.
|
||||
|
||||
You can find the list of models at [Ollama Embedding Models](https://ollama.com/blog/embedding-models).
|
||||
|
||||
Below is an example of how to use embedding model Ollama:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
embedder:
|
||||
provider: ollama
|
||||
config:
|
||||
model: 'all-minilm:latest'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Clarifai
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[clarifai]'
|
||||
```
|
||||
|
||||
set the `CLARIFAI_PAT` as environment variable which you can find in the [security page](https://clarifai.com/settings/security). Optionally you can also pass the PAT key as parameters in LLM/Embedder class.
|
||||
|
||||
Now you are all set with exploring Embedchain.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["CLARIFAI_PAT"] = "XXX"
|
||||
|
||||
# load llm and embedder configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
#Now let's add some data.
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
#Query the app
|
||||
response = app.query("what college degrees does elon musk have?")
|
||||
```
|
||||
Head to [Clarifai Platform](https://clarifai.com/explore/models?page=1&perPage=24&filterData=%5B%7B%22field%22%3A%22output_fields%22%2C%22value%22%3A%5B%22embeddings%22%5D%7D%5D) to explore all the State of the Art embedding models available to use.
|
||||
For passing LLM model inference parameters use `model_kwargs` argument in the config file. Also you can use `api_key` argument to pass `CLARIFAI_PAT` in the config.
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct"
|
||||
model_kwargs:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
embedder:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
|
||||
```
|
||||
</CodeGroup>
|
||||
275
embedchain/docs/components/evaluation.mdx
Normal file
275
embedchain/docs/components/evaluation.mdx
Normal file
@@ -0,0 +1,275 @@
|
||||
---
|
||||
title: 🔬 Evaluation
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
We provide out-of-the-box evaluation metrics for your RAG application. You can use them to evaluate your RAG applications and compare against different settings of your production RAG application.
|
||||
|
||||
Currently, we provide support for following evaluation metrics:
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Context Relevancy" href="#context_relevancy"></Card>
|
||||
<Card title="Answer Relevancy" href="#answer_relevancy"></Card>
|
||||
<Card title="Groundedness" href="#groundedness"></Card>
|
||||
<Card title="Custom Metric" href="#custom_metric"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Quickstart
|
||||
|
||||
Here is a basic example of running evaluation:
|
||||
|
||||
```python example.py
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# Add data sources
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# Run evaluation
|
||||
app.evaluate(["What is the net worth of Elon Musk?", "How many companies Elon Musk owns?"])
|
||||
# {'answer_relevancy': 0.9987286412340826, 'groundedness': 1.0, 'context_relevancy': 0.3571428571428571}
|
||||
```
|
||||
|
||||
Under the hood, Embedchain does the following:
|
||||
|
||||
1. Runs semantic search in the vector database and fetches context
|
||||
2. LLM call with question, context to fetch the answer
|
||||
3. Run evaluation on following metrics: `context relevancy`, `groundedness`, and `answer relevancy` and return result
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
We use OpenAI's `gpt-4` model as default LLM model for automatic evaluation. Hence, we require you to set `OPENAI_API_KEY` as an environment variable.
|
||||
|
||||
### Step-1: Create dataset
|
||||
|
||||
In order to evaluate your RAG application, you have to setup a dataset. A data point in the dataset consists of `questions`, `contexts`, `answer`. Here is an example of how to create a dataset for evaluation:
|
||||
|
||||
```python
|
||||
from embedchain.utils.eval import EvalData
|
||||
|
||||
data = [
|
||||
{
|
||||
"question": "What is the net worth of Elon Musk?",
|
||||
"contexts": [
|
||||
"Elon Musk PROFILEElon MuskCEO, ...",
|
||||
"a Twitter poll on whether the journalists' ...",
|
||||
"2016 and run by Jared Birchall.[335]...",
|
||||
],
|
||||
"answer": "As of the information provided, Elon Musk's net worth is $241.6 billion.",
|
||||
},
|
||||
{
|
||||
"question": "which companies does Elon Musk own?",
|
||||
"contexts": [
|
||||
"of December 2023[update], ...",
|
||||
"ThielCofounderView ProfileTeslaHolds ...",
|
||||
"Elon Musk PROFILEElon MuskCEO, ...",
|
||||
],
|
||||
"answer": "Elon Musk owns several companies, including Tesla, SpaceX, Neuralink, and The Boring Company.",
|
||||
},
|
||||
]
|
||||
|
||||
dataset = []
|
||||
|
||||
for d in data:
|
||||
eval_data = EvalData(question=d["question"], contexts=d["contexts"], answer=d["answer"])
|
||||
dataset.append(eval_data)
|
||||
```
|
||||
|
||||
### Step-2: Run evaluation
|
||||
|
||||
Once you have created your dataset, you can run evaluation on the dataset by picking the metric you want to run evaluation on.
|
||||
|
||||
For example, you can run evaluation on context relevancy metric using the following code:
|
||||
|
||||
```python
|
||||
from embedchain.evaluation.metrics import ContextRelevance
|
||||
metric = ContextRelevance()
|
||||
score = metric.evaluate(dataset)
|
||||
print(score)
|
||||
```
|
||||
|
||||
You can choose a different metric or write your own to run evaluation on. You can check the following links:
|
||||
|
||||
- [Context Relevancy](#context_relevancy)
|
||||
- [Answer relenvancy](#answer_relevancy)
|
||||
- [Groundedness](#groundedness)
|
||||
- [Build your own metric](#custom_metric)
|
||||
|
||||
## Metrics
|
||||
|
||||
### Context Relevancy <a id="context_relevancy"></a>
|
||||
|
||||
Context relevancy is a metric to determine "how relevant the context is to the question". We use OpenAI's `gpt-4` model to determine the relevancy of the context. We achieve this by prompting the model with the question and the context and asking it to return relevant sentences from the context. We then use the following formula to determine the score:
|
||||
|
||||
```
|
||||
context_relevance_score = num_relevant_sentences_in_context / num_of_sentences_in_context
|
||||
```
|
||||
|
||||
#### Examples
|
||||
|
||||
You can run the context relevancy evaluation with the following simple code:
|
||||
|
||||
```python
|
||||
from embedchain.evaluation.metrics import ContextRelevance
|
||||
|
||||
metric = ContextRelevance()
|
||||
score = metric.evaluate(dataset) # 'dataset' is definted in the create dataset section
|
||||
print(score)
|
||||
# 0.27975528364849833
|
||||
```
|
||||
|
||||
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `ContextRelevanceConfig` class.
|
||||
|
||||
Here is a more advanced example of how to pass a custom evaluation config for evaluating on context relevance metric:
|
||||
|
||||
```python
|
||||
from embedchain.config.evaluation.base import ContextRelevanceConfig
|
||||
from embedchain.evaluation.metrics import ContextRelevance
|
||||
|
||||
eval_config = ContextRelevanceConfig(model="gpt-4", api_key="sk-xxx", language="en")
|
||||
metric = ContextRelevance(config=eval_config)
|
||||
metric.evaluate(dataset)
|
||||
```
|
||||
|
||||
#### `ContextRelevanceConfig`
|
||||
|
||||
<ParamField path="model" type="str" optional>
|
||||
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
|
||||
</ParamField>
|
||||
<ParamField path="api_key" type="str" optional>
|
||||
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
|
||||
</ParamField>
|
||||
<ParamField path="language" type="str" optional>
|
||||
The language of the dataset being evaluated. We need this to determine the understand the context provided in the dataset. Defaults to `en`.
|
||||
</ParamField>
|
||||
<ParamField path="prompt" type="str" optional>
|
||||
The prompt to extract the relevant sentences from the context. Defaults to `CONTEXT_RELEVANCY_PROMPT`, which can be found at `embedchain.config.evaluation.base` path.
|
||||
</ParamField>
|
||||
|
||||
|
||||
### Answer Relevancy <a id="answer_relevancy"></a>
|
||||
|
||||
Answer relevancy is a metric to determine how relevant the answer is to the question. We prompt the model with the answer and asking it to generate questions from the answer. We then use the cosine similarity between the generated questions and the original question to determine the score.
|
||||
|
||||
```
|
||||
answer_relevancy_score = mean(cosine_similarity(generated_questions, original_question))
|
||||
```
|
||||
|
||||
#### Examples
|
||||
|
||||
You can run the answer relevancy evaluation with the following simple code:
|
||||
|
||||
```python
|
||||
from embedchain.evaluation.metrics import AnswerRelevance
|
||||
|
||||
metric = AnswerRelevance()
|
||||
score = metric.evaluate(dataset)
|
||||
print(score)
|
||||
# 0.9505334177461916
|
||||
```
|
||||
|
||||
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `AnswerRelevanceConfig` class. Here is a more advanced example where you can provide your own evaluation config:
|
||||
|
||||
```python
|
||||
from embedchain.config.evaluation.base import AnswerRelevanceConfig
|
||||
from embedchain.evaluation.metrics import AnswerRelevance
|
||||
|
||||
eval_config = AnswerRelevanceConfig(
|
||||
model='gpt-4',
|
||||
embedder="text-embedding-ada-002",
|
||||
api_key="sk-xxx",
|
||||
num_gen_questions=2
|
||||
)
|
||||
metric = AnswerRelevance(config=eval_config)
|
||||
score = metric.evaluate(dataset)
|
||||
```
|
||||
|
||||
#### `AnswerRelevanceConfig`
|
||||
|
||||
<ParamField path="model" type="str" optional>
|
||||
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
|
||||
</ParamField>
|
||||
<ParamField path="embedder" type="str" optional>
|
||||
The embedder to use for embedding the text. Defaults to `text-embedding-ada-002`. We only support openai's embedders for now.
|
||||
</ParamField>
|
||||
<ParamField path="api_key" type="str" optional>
|
||||
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
|
||||
</ParamField>
|
||||
<ParamField path="num_gen_questions" type="int" optional>
|
||||
The number of questions to generate for each answer. We use the generated questions to compare the similarity with the original question to determine the score. Defaults to `1`.
|
||||
</ParamField>
|
||||
<ParamField path="prompt" type="str" optional>
|
||||
The prompt to extract the `num_gen_questions` number of questions from the provided answer. Defaults to `ANSWER_RELEVANCY_PROMPT`, which can be found at `embedchain.config.evaluation.base` path.
|
||||
</ParamField>
|
||||
|
||||
## Groundedness <a id="groundedness"></a>
|
||||
|
||||
Groundedness is a metric to determine how grounded the answer is to the context. We use OpenAI's `gpt-4` model to determine the groundedness of the answer. We achieve this by prompting the model with the answer and asking it to generate claims from the answer. We then again prompt the model with the context and the generated claims to determine the verdict on the claims. We then use the following formula to determine the score:
|
||||
|
||||
```
|
||||
groundedness_score = (sum of all verdicts) / (total # of claims)
|
||||
```
|
||||
|
||||
You can run the groundedness evaluation with the following simple code:
|
||||
|
||||
```python
|
||||
from embedchain.evaluation.metrics import Groundedness
|
||||
metric = Groundedness()
|
||||
score = metric.evaluate(dataset) # dataset from above
|
||||
print(score)
|
||||
# 1.0
|
||||
```
|
||||
|
||||
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `GroundednessConfig` class. Here is a more advanced example where you can configure the evaluation config:
|
||||
|
||||
```python
|
||||
from embedchain.config.evaluation.base import GroundednessConfig
|
||||
from embedchain.evaluation.metrics import Groundedness
|
||||
|
||||
eval_config = GroundednessConfig(model='gpt-4', api_key="sk-xxx")
|
||||
metric = Groundedness(config=eval_config)
|
||||
score = metric.evaluate(dataset)
|
||||
```
|
||||
|
||||
|
||||
#### `GroundednessConfig`
|
||||
|
||||
<ParamField path="model" type="str" optional>
|
||||
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
|
||||
</ParamField>
|
||||
<ParamField path="api_key" type="str" optional>
|
||||
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
|
||||
</ParamField>
|
||||
<ParamField path="answer_claims_prompt" type="str" optional>
|
||||
The prompt to extract the claims from the provided answer. Defaults to `GROUNDEDNESS_ANSWER_CLAIMS_PROMPT`, which can be found at `embedchain.config.evaluation.base` path.
|
||||
</ParamField>
|
||||
<ParamField path="claims_inference_prompt" type="str" optional>
|
||||
The prompt to get verdicts on the claims from the answer from the given context. Defaults to `GROUNDEDNESS_CLAIMS_INFERENCE_PROMPT`, which can be found at `embedchain.config.evaluation.base` path.
|
||||
</ParamField>
|
||||
|
||||
## Custom <a id="custom_metric"></a>
|
||||
|
||||
You can also create your own evaluation metric by extending the `BaseMetric` class. You can find the source code for the existing metrics at `embedchain.evaluation.metrics` path.
|
||||
|
||||
<Note>
|
||||
You must provide the `name` of your custom metric in the `__init__` method of your class. This name will be used to identify your metric in the evaluation report.
|
||||
</Note>
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config.base_config import BaseConfig
|
||||
from embedchain.evaluation.metrics import BaseMetric
|
||||
from embedchain.utils.eval import EvalData
|
||||
|
||||
class MyCustomMetric(BaseMetric):
|
||||
def __init__(self, config: Optional[BaseConfig] = None):
|
||||
super().__init__(name="my_custom_metric")
|
||||
|
||||
def evaluate(self, dataset: list[EvalData]):
|
||||
score = 0.0
|
||||
# write your evaluation logic here
|
||||
return score
|
||||
```
|
||||
13
embedchain/docs/components/introduction.mdx
Normal file
13
embedchain/docs/components/introduction.mdx
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
title: 🧩 Introduction
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
You can configure following components
|
||||
|
||||
* [Data Source](/components/data-sources/overview)
|
||||
* [LLM](/components/llms)
|
||||
* [Embedding Model](/components/embedding-models)
|
||||
* [Vector Database](/components/vector-databases)
|
||||
* [Evaluation](/components/evaluation)
|
||||
901
embedchain/docs/components/llms.mdx
Normal file
901
embedchain/docs/components/llms.mdx
Normal file
@@ -0,0 +1,901 @@
|
||||
---
|
||||
title: 🤖 Large language models (LLMs)
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Embedchain comes with built-in support for various popular large language models. We handle the complexity of integrating these models for you, allowing you to easily customize your language model interactions through a user-friendly interface.
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="OpenAI" href="#openai"></Card>
|
||||
<Card title="Google AI" href="#google-ai"></Card>
|
||||
<Card title="Azure OpenAI" href="#azure-openai"></Card>
|
||||
<Card title="Anthropic" href="#anthropic"></Card>
|
||||
<Card title="Cohere" href="#cohere"></Card>
|
||||
<Card title="Together" href="#together"></Card>
|
||||
<Card title="Ollama" href="#ollama"></Card>
|
||||
<Card title="vLLM" href="#vllm"></Card>
|
||||
<Card title="Clarifai" href="#clarifai"></Card>
|
||||
<Card title="GPT4All" href="#gpt4all"></Card>
|
||||
<Card title="JinaChat" href="#jinachat"></Card>
|
||||
<Card title="Hugging Face" href="#hugging-face"></Card>
|
||||
<Card title="Llama2" href="#llama2"></Card>
|
||||
<Card title="Vertex AI" href="#vertex-ai"></Card>
|
||||
<Card title="Mistral AI" href="#mistral-ai"></Card>
|
||||
<Card title="AWS Bedrock" href="#aws-bedrock"></Card>
|
||||
<Card title="Groq" href="#groq"></Card>
|
||||
<Card title="NVIDIA AI" href="#nvidia-ai"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## OpenAI
|
||||
|
||||
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
|
||||
|
||||
Once you have obtained the key, you can use it like this:
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
app = App()
|
||||
app.add("https://en.wikipedia.org/wiki/OpenAI")
|
||||
app.query("What is OpenAI?")
|
||||
```
|
||||
|
||||
If you are looking to configure the different parameters of the LLM, you can do so by loading the app using a [yaml config](https://github.com/embedchain/embedchain/blob/main/configs/chroma.yaml) file.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: 'gpt-3.5-turbo'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Function Calling
|
||||
Embedchain supports OpenAI [Function calling](https://platform.openai.com/docs/guides/function-calling) with a single function. It accepts inputs in accordance with the [Langchain interface](https://python.langchain.com/docs/modules/model_io/chat/function_calling#legacy-args-functions-and-function_call).
|
||||
|
||||
<Accordion title="Pydantic Model">
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
class multiply(BaseModel):
|
||||
"""Multiply two integers together."""
|
||||
|
||||
a: int = Field(..., description="First integer")
|
||||
b: int = Field(..., description="Second integer")
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Python function">
|
||||
```python
|
||||
def multiply(a: int, b: int) -> int:
|
||||
"""Multiply two integers together.
|
||||
|
||||
Args:
|
||||
a: First integer
|
||||
b: Second integer
|
||||
"""
|
||||
return a * b
|
||||
```
|
||||
</Accordion>
|
||||
<Accordion title="OpenAI tool dictionary">
|
||||
```python
|
||||
multiply = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "multiply",
|
||||
"description": "Multiply two integers together.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {
|
||||
"description": "First integer",
|
||||
"type": "integer"
|
||||
},
|
||||
"b": {
|
||||
"description": "Second integer",
|
||||
"type": "integer"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"a",
|
||||
"b"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
With any of the previous inputs, the OpenAI LLM can be queried to provide the appropriate arguments for the function.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain.llm.openai import OpenAILlm
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
llm = OpenAILlm(tools=multiply)
|
||||
app = App(llm=llm)
|
||||
|
||||
result = app.query("What is the result of 125 multiplied by fifteen?")
|
||||
```
|
||||
|
||||
## Google AI
|
||||
|
||||
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["GOOGLE_API_KEY"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
response = app.query("What is the net worth of Elon Musk?")
|
||||
if app.llm.config.stream: # if stream is enabled, response is a generator
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
else:
|
||||
print(response)
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: google
|
||||
config:
|
||||
model: gemini-pro
|
||||
max_tokens: 1000
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: google
|
||||
config:
|
||||
model: 'models/embedding-001'
|
||||
task_type: "retrieval_document"
|
||||
title: "Embeddings for Embedchain"
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
To use Azure OpenAI model, you have to set some of the azure openai related environment variables as given in the code block below:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://xxx.openai.azure.com/"
|
||||
os.environ["AZURE_OPENAI_KEY"] = "xxx"
|
||||
os.environ["OPENAI_API_VERSION"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: gpt-3.5-turbo
|
||||
deployment_name: your_llm_deployment_name
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: azure_openai
|
||||
config:
|
||||
model: text-embedding-ada-002
|
||||
deployment_name: you_embedding_model_deployment_name
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
|
||||
|
||||
## Anthropic
|
||||
|
||||
To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["ANTHROPIC_API_KEY"] = "xxx"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: anthropic
|
||||
config:
|
||||
model: 'claude-instant-1'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Cohere
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[cohere]'
|
||||
```
|
||||
|
||||
Set the `COHERE_API_KEY` as environment variable which you can find on their [Account settings page](https://dashboard.cohere.com/api-keys).
|
||||
|
||||
Once you have the API key, you are all set to use it with Embedchain.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["COHERE_API_KEY"] = "xxx"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: cohere
|
||||
config:
|
||||
model: large
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Together
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[together]'
|
||||
```
|
||||
|
||||
Set the `TOGETHER_API_KEY` as environment variable which you can find on their [Account settings page](https://api.together.xyz/settings/api-keys).
|
||||
|
||||
Once you have the API key, you are all set to use it with Embedchain.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["TOGETHER_API_KEY"] = "xxx"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: together
|
||||
config:
|
||||
model: togethercomputer/RedPajama-INCITE-7B-Base
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Ollama
|
||||
|
||||
Setup Ollama using https://github.com/jmorganca/ollama
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
os.environ["OLLAMA_HOST"] = "http://127.0.0.1:11434"
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: ollama
|
||||
config:
|
||||
model: 'llama2'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
stream: true
|
||||
base_url: 'http://localhost:11434'
|
||||
embedder:
|
||||
provider: ollama
|
||||
config:
|
||||
model: znbang/bge:small-en-v1.5-q8_0
|
||||
base_url: http://localhost:11434
|
||||
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## vLLM
|
||||
|
||||
Setup vLLM by following instructions given in [their docs](https://docs.vllm.ai/en/latest/getting_started/installation.html).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: vllm
|
||||
config:
|
||||
model: 'meta-llama/Llama-2-70b-hf'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
top_k: 10
|
||||
stream: true
|
||||
trust_remote_code: true
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Clarifai
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[clarifai]'
|
||||
```
|
||||
|
||||
set the `CLARIFAI_PAT` as environment variable which you can find in the [security page](https://clarifai.com/settings/security). Optionally you can also pass the PAT key as parameters in LLM/Embedder class.
|
||||
|
||||
Now you are all set with exploring Embedchain.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["CLARIFAI_PAT"] = "XXX"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
#Now let's add some data.
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
#Query the app
|
||||
response = app.query("what college degrees does elon musk have?")
|
||||
```
|
||||
Head to [Clarifai Platform](https://clarifai.com/explore/models?page=1&perPage=24&filterData=%5B%7B%22field%22%3A%22use_cases%22%2C%22value%22%3A%5B%22llm%22%5D%7D%5D) to browse various State-of-the-Art LLM models for your use case.
|
||||
For passing model inference parameters use `model_kwargs` argument in the config file. Also you can use `api_key` argument to pass `CLARIFAI_PAT` in the config.
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct"
|
||||
model_kwargs:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
embedder:
|
||||
provider: clarifai
|
||||
config:
|
||||
model: "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## GPT4ALL
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[opensource]'
|
||||
```
|
||||
|
||||
GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. You can use this with Embedchain using the following code:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'orca-mini-3b-gguf2-q4_0.gguf'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## JinaChat
|
||||
|
||||
First, set `JINACHAT_API_KEY` in environment variable which you can obtain from [their platform](https://chat.jina.ai/api).
|
||||
|
||||
Once you have the key, load the app using the config yaml file:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["JINACHAT_API_KEY"] = "xxx"
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: jina
|
||||
config:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## Hugging Face
|
||||
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[huggingface-hub]'
|
||||
```
|
||||
|
||||
First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
|
||||
|
||||
You can load the LLMs from Hugging Face using three ways:
|
||||
|
||||
- [Hugging Face Hub](#hugging-face-hub)
|
||||
- [Hugging Face Local Pipelines](#hugging-face-local-pipelines)
|
||||
- [Hugging Face Inference Endpoint](#hugging-face-inference-endpoint)
|
||||
|
||||
### Hugging Face Hub
|
||||
|
||||
To load the model from Hugging Face Hub, use the following code:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
|
||||
|
||||
config = {
|
||||
"app": {"config": {"id": "my-app"}},
|
||||
"llm": {
|
||||
"provider": "huggingface",
|
||||
"config": {
|
||||
"model": "bigscience/bloom-1b7",
|
||||
"top_p": 0.5,
|
||||
"max_length": 200,
|
||||
"temperature": 0.1,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Hugging Face Local Pipelines
|
||||
|
||||
If you want to load the locally downloaded model from Hugging Face, you can do so by following the code provided below:
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"app": {"config": {"id": "my-app"}},
|
||||
"llm": {
|
||||
"provider": "huggingface",
|
||||
"config": {
|
||||
"model": "Trendyol/Trendyol-LLM-7b-chat-v0.1",
|
||||
"local": True, # Necessary if you want to run model locally
|
||||
"top_p": 0.5,
|
||||
"max_tokens": 1000,
|
||||
"temperature": 0.1,
|
||||
},
|
||||
}
|
||||
}
|
||||
app = App.from_config(config=config)
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Hugging Face Inference Endpoint
|
||||
|
||||
You can also use [Hugging Face Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index#-inference-endpoints) to access custom endpoints. First, set the `HUGGINGFACE_ACCESS_TOKEN` as above.
|
||||
|
||||
Then, load the app using the config yaml file:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
"app": {"config": {"id": "my-app"}},
|
||||
"llm": {
|
||||
"provider": "huggingface",
|
||||
"config": {
|
||||
"endpoint": "https://api-inference.huggingface.co/models/gpt2",
|
||||
"model_params": {"temprature": 0.1, "max_new_tokens": 100}
|
||||
},
|
||||
},
|
||||
}
|
||||
app = App.from_config(config=config)
|
||||
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
Currently only supports `text-generation` and `text2text-generation` for now [[ref](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html?highlight=huggingfaceendpoint#)].
|
||||
|
||||
See langchain's [hugging face endpoint](https://python.langchain.com/docs/integrations/chat/huggingface#huggingfaceendpoint) for more information.
|
||||
|
||||
## Llama2
|
||||
|
||||
Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
|
||||
|
||||
Once you have the token, load the app using the config yaml file:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["REPLICATE_API_TOKEN"] = "xxx"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: llama2
|
||||
config:
|
||||
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 0.5
|
||||
stream: false
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Vertex AI
|
||||
|
||||
Setup Google Cloud Platform application credentials by following the instruction on [GCP](https://cloud.google.com/docs/authentication/external/set-up-adc). Once setup is done, use the following code to create an app using VertexAI as provider:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: vertexai
|
||||
config:
|
||||
model: 'chat-bison'
|
||||
temperature: 0.5
|
||||
top_p: 0.5
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## Mistral AI
|
||||
|
||||
Obtain the Mistral AI api key from their [console](https://console.mistral.ai/).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
os.environ["MISTRAL_API_KEY"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
response = app.query("what is the net worth of Elon Musk?")
|
||||
# As of January 16, 2024, Elon Musk's net worth is $225.4 billion.
|
||||
|
||||
response = app.chat("which companies does elon own?")
|
||||
# Elon Musk owns Tesla, SpaceX, Boring Company, Twitter, and X.
|
||||
|
||||
response = app.chat("what question did I ask you already?")
|
||||
# You have asked me several times already which companies Elon Musk owns, specifically Tesla, SpaceX, Boring Company, Twitter, and X.
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: mistralai
|
||||
config:
|
||||
model: mistral-tiny
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
embedder:
|
||||
provider: mistralai
|
||||
config:
|
||||
model: mistral-embed
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
## AWS Bedrock
|
||||
|
||||
### Setup
|
||||
- Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess).
|
||||
- You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials)
|
||||
- You can optionally export an `AWS_REGION`
|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = "xxx"
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = "xxx"
|
||||
os.environ["AWS_REGION"] = "us-west-2"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: aws_bedrock
|
||||
config:
|
||||
model: amazon.titan-text-express-v1
|
||||
# check notes below for model_kwargs
|
||||
model_kwargs:
|
||||
temperature: 0.5
|
||||
topP: 1
|
||||
maxTokenCount: 1000
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
<br />
|
||||
<Note>
|
||||
The model arguments are different for each providers. Please refer to the [AWS Bedrock Documentation](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers) to find the appropriate arguments for your model.
|
||||
</Note>
|
||||
|
||||
<br/ >
|
||||
|
||||
## Groq
|
||||
|
||||
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key.
|
||||
|
||||
Set the API key as `GROQ_API_KEY` environment variable or pass in your app configuration to use the model as given below in the example.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# Set your API key here or pass as the environment variable
|
||||
groq_api_key = "gsk_xxxx"
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "groq",
|
||||
"config": {
|
||||
"model": "mixtral-8x7b-32768",
|
||||
"api_key": groq_api_key,
|
||||
"stream": True
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
# Add your data source here
|
||||
app.add("https://docs.embedchain.ai/sitemap.xml", data_type="sitemap")
|
||||
app.query("Write a poem about Embedchain")
|
||||
|
||||
# In the realm of data, vast and wide,
|
||||
# Embedchain stands with knowledge as its guide.
|
||||
# A platform open, for all to try,
|
||||
# Building bots that can truly fly.
|
||||
|
||||
# With REST API, data in reach,
|
||||
# Deployment a breeze, as easy as a speech.
|
||||
# Updating data sources, anytime, anyday,
|
||||
# Embedchain's power, never sway.
|
||||
|
||||
# A knowledge base, an assistant so grand,
|
||||
# Connecting to platforms, near and far.
|
||||
# Discord, WhatsApp, Slack, and more,
|
||||
# Embedchain's potential, never a bore.
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## NVIDIA AI
|
||||
|
||||
[NVIDIA AI Foundation Endpoints](https://www.nvidia.com/en-us/ai-data-science/foundation-models/) let you quickly use NVIDIA's AI models, such as Mixtral 8x7B, Llama 2 etc, through our API. These models are available in the [NVIDIA NGC catalog](https://catalog.ngc.nvidia.com/ai-foundation-models), fully optimized and ready to use on NVIDIA's AI platform. They are designed for high speed and easy customization, ensuring smooth performance on any accelerated setup.
|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
In order to use LLMs from NVIDIA AI, create an account on [NVIDIA NGC Service](https://catalog.ngc.nvidia.com/).
|
||||
|
||||
Generate an API key from their dashboard. Set the API key as `NVIDIA_API_KEY` environment variable. Note that the `NVIDIA_API_KEY` will start with `nvapi-`.
|
||||
|
||||
Below is an example of how to use LLM model and embedding model from NVIDIA AI:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['NVIDIA_API_KEY'] = 'nvapi-xxxx'
|
||||
|
||||
config = {
|
||||
"app": {
|
||||
"config": {
|
||||
"id": "my-app",
|
||||
},
|
||||
},
|
||||
"llm": {
|
||||
"provider": "nvidia",
|
||||
"config": {
|
||||
"model": "nemotron_steerlm_8b",
|
||||
},
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "nvidia",
|
||||
"config": {
|
||||
"model": "nvolveqa_40k",
|
||||
"vector_dimension": 1024,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
answer = app.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk is subject to fluctuations based on the market value of his holdings in various companies.
|
||||
# As of March 1, 2024, his net worth is estimated to be approximately $210 billion. However, this figure can change rapidly due to stock market fluctuations and other factors.
|
||||
# Additionally, his net worth may include other assets such as real estate and art, which are not reflected in his stock portfolio.
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Token Usage
|
||||
|
||||
You can get the cost of the query by setting `token_usage` to `True` in the config file. This will return the token details: `prompt_tokens`, `completion_tokens`, `total_tokens`, `total_cost`, `cost_currency`.
|
||||
The list of paid LLMs that support token usage are:
|
||||
- OpenAI
|
||||
- Vertex AI
|
||||
- Anthropic
|
||||
- Cohere
|
||||
- Together
|
||||
- Groq
|
||||
- Mistral AI
|
||||
- NVIDIA AI
|
||||
|
||||
Here is an example of how to use token usage:
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
os.environ["OPENAI_API_KEY"] = "xxx"
|
||||
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
response = app.query("what is the net worth of Elon Musk?")
|
||||
# {'answer': 'Elon Musk's net worth is $209.9 billion as of 6/9/24.',
|
||||
# 'usage': {'prompt_tokens': 1228,
|
||||
# 'completion_tokens': 21,
|
||||
# 'total_tokens': 1249,
|
||||
# 'total_cost': 0.001884,
|
||||
# 'cost_currency': 'USD'}
|
||||
# }
|
||||
|
||||
|
||||
response = app.chat("Which companies did Elon Musk found?")
|
||||
# {'answer': 'Elon Musk founded six companies, including Tesla, which is an electric car maker, SpaceX, a rocket producer, and the Boring Company, a tunneling startup.',
|
||||
# 'usage': {'prompt_tokens': 1616,
|
||||
# 'completion_tokens': 34,
|
||||
# 'total_tokens': 1650,
|
||||
# 'total_cost': 0.002492,
|
||||
# 'cost_currency': 'USD'}
|
||||
# }
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: openai
|
||||
config:
|
||||
model: gpt-3.5-turbo
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
token_usage: true
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
If a model is missing and you'd like to add it to `model_prices_and_context_window.json`, please feel free to open a PR.
|
||||
|
||||
<br/ >
|
||||
|
||||
<Snippet file="missing-llm-tip.mdx" />
|
||||
20
embedchain/docs/components/vector-databases.mdx
Normal file
20
embedchain/docs/components/vector-databases.mdx
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
title: 🗄️ Vector databases
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Utilizing a vector database alongside Embedchain is a seamless process. All you need to do is configure it within the YAML configuration file. We've provided examples for each supported database below:
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="ChromaDB" href="#chromadb"></Card>
|
||||
<Card title="Elasticsearch" href="#elasticsearch"></Card>
|
||||
<Card title="OpenSearch" href="#opensearch"></Card>
|
||||
<Card title="Zilliz" href="#zilliz"></Card>
|
||||
<Card title="LanceDB" href="#lancedb"></Card>
|
||||
<Card title="Pinecone" href="#pinecone"></Card>
|
||||
<Card title="Qdrant" href="#qdrant"></Card>
|
||||
<Card title="Weaviate" href="#weaviate"></Card>
|
||||
</CardGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
35
embedchain/docs/components/vector-databases/chromadb.mdx
Normal file
35
embedchain/docs/components/vector-databases/chromadb.mdx
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
title: ChromaDB
|
||||
---
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load chroma configuration from yaml file
|
||||
app = App.from_config(config_path="config1.yaml")
|
||||
```
|
||||
|
||||
```yaml config1.yaml
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'my-collection'
|
||||
dir: db
|
||||
allow_reset: true
|
||||
```
|
||||
|
||||
```yaml config2.yaml
|
||||
vectordb:
|
||||
provider: chroma
|
||||
config:
|
||||
collection_name: 'my-collection'
|
||||
host: localhost
|
||||
port: 5200
|
||||
allow_reset: true
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
@@ -0,0 +1,39 @@
|
||||
---
|
||||
title: Elasticsearch
|
||||
---
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[elasticsearch]'
|
||||
```
|
||||
|
||||
<Note>
|
||||
You can configure the Elasticsearch connection by providing either `es_url` or `cloud_id`. If you are using the Elasticsearch Service on Elastic Cloud, you can find the `cloud_id` on the [Elastic Cloud dashboard](https://cloud.elastic.co/deployments).
|
||||
</Note>
|
||||
|
||||
You can authorize the connection to Elasticsearch by providing either `basic_auth`, `api_key`, or `bearer_auth`.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load elasticsearch configuration from yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
vectordb:
|
||||
provider: elasticsearch
|
||||
config:
|
||||
collection_name: 'es-index'
|
||||
cloud_id: 'deployment-name:xxxx'
|
||||
basic_auth:
|
||||
- elastic
|
||||
- <your_password>
|
||||
verify_certs: false
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
100
embedchain/docs/components/vector-databases/lancedb.mdx
Normal file
100
embedchain/docs/components/vector-databases/lancedb.mdx
Normal file
@@ -0,0 +1,100 @@
|
||||
---
|
||||
title: LanceDB
|
||||
---
|
||||
|
||||
## Install Embedchain with LanceDB
|
||||
|
||||
Install Embedchain, LanceDB and related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install "embedchain[lancedb]"
|
||||
```
|
||||
|
||||
LanceDB is a developer-friendly, open source database for AI. From hyper scalable vector search and advanced retrieval for RAG, to streaming training data and interactive exploration of large scale AI datasets.
|
||||
In order to use LanceDB as vector database, not need to set any key for local use.
|
||||
|
||||
### With OPENAI
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# set OPENAI_API_KEY as env variable
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xxx"
|
||||
|
||||
# create Embedchain App and set config
|
||||
app = App.from_config(config={
|
||||
"vectordb": {
|
||||
"provider": "lancedb",
|
||||
"config": {
|
||||
"collection_name": "lancedb-index"
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# add data source and start query in
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# query continuously
|
||||
while(True):
|
||||
question = input("Enter question: ")
|
||||
if question in ['q', 'exit', 'quit']:
|
||||
break
|
||||
answer = app.query(question)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
### With Local LLM
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# config for Embedchain App
|
||||
config = {
|
||||
'llm': {
|
||||
'provider': 'huggingface',
|
||||
'config': {
|
||||
'model': 'mistralai/Mistral-7B-v0.1',
|
||||
'temperature': 0.1,
|
||||
'max_tokens': 250,
|
||||
'top_p': 0.1,
|
||||
'stream': True
|
||||
}
|
||||
},
|
||||
'embedder': {
|
||||
'provider': 'huggingface',
|
||||
'config': {
|
||||
'model': 'sentence-transformers/all-mpnet-base-v2'
|
||||
}
|
||||
},
|
||||
'vectordb': {
|
||||
'provider': 'lancedb',
|
||||
'config': {
|
||||
'collection_name': 'lancedb-index'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
app = App.from_config(config=config)
|
||||
|
||||
# add data source and start query in
|
||||
app.add("https://www.tesla.com/ns_videos/2022-tesla-impact-report.pdf")
|
||||
|
||||
# query continuously
|
||||
while(True):
|
||||
question = input("Enter question: ")
|
||||
if question in ['q', 'exit', 'quit']:
|
||||
break
|
||||
answer = app.query(question)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
36
embedchain/docs/components/vector-databases/opensearch.mdx
Normal file
36
embedchain/docs/components/vector-databases/opensearch.mdx
Normal file
@@ -0,0 +1,36 @@
|
||||
---
|
||||
title: OpenSearch
|
||||
---
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[opensearch]'
|
||||
```
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load opensearch configuration from yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
vectordb:
|
||||
provider: opensearch
|
||||
config:
|
||||
collection_name: 'my-app'
|
||||
opensearch_url: 'https://localhost:9200'
|
||||
http_auth:
|
||||
- admin
|
||||
- admin
|
||||
vector_dimension: 1536
|
||||
use_ssl: false
|
||||
verify_certs: false
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
109
embedchain/docs/components/vector-databases/pinecone.mdx
Normal file
109
embedchain/docs/components/vector-databases/pinecone.mdx
Normal file
@@ -0,0 +1,109 @@
|
||||
---
|
||||
title: Pinecone
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Install pinecone related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'pinecone-client pinecone-text'
|
||||
```
|
||||
|
||||
In order to use Pinecone as vector database, set the environment variable `PINECONE_API_KEY` which you can find on [Pinecone dashboard](https://app.pinecone.io/).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# Load pinecone configuration from yaml file
|
||||
app = App.from_config(config_path="pod_config.yaml")
|
||||
# Or
|
||||
app = App.from_config(config_path="serverless_config.yaml")
|
||||
```
|
||||
|
||||
```yaml pod_config.yaml
|
||||
vectordb:
|
||||
provider: pinecone
|
||||
config:
|
||||
metric: cosine
|
||||
vector_dimension: 1536
|
||||
index_name: my-pinecone-index
|
||||
pod_config:
|
||||
environment: gcp-starter
|
||||
metadata_config:
|
||||
indexed:
|
||||
- "url"
|
||||
- "hash"
|
||||
```
|
||||
|
||||
```yaml serverless_config.yaml
|
||||
vectordb:
|
||||
provider: pinecone
|
||||
config:
|
||||
metric: cosine
|
||||
vector_dimension: 1536
|
||||
index_name: my-pinecone-index
|
||||
serverless_config:
|
||||
cloud: aws
|
||||
region: us-west-2
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
<br />
|
||||
<Note>
|
||||
You can find more information about Pinecone configuration [here](https://docs.pinecone.io/docs/manage-indexes#create-a-pod-based-index).
|
||||
You can also optionally provide `index_name` as a config param in yaml file to specify the index name. If not provided, the index name will be `{collection_name}-{vector_dimension}`.
|
||||
</Note>
|
||||
|
||||
## Usage
|
||||
|
||||
### Hybrid search
|
||||
|
||||
Here is an example of how you can do hybrid search using Pinecone as a vector database through Embedchain.
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
from embedchain import App
|
||||
|
||||
config = {
|
||||
'app': {
|
||||
"config": {
|
||||
"id": "ec-docs-hybrid-search"
|
||||
}
|
||||
},
|
||||
'vectordb': {
|
||||
'provider': 'pinecone',
|
||||
'config': {
|
||||
'metric': 'dotproduct',
|
||||
'vector_dimension': 1536,
|
||||
'index_name': 'my-index',
|
||||
'serverless_config': {
|
||||
'cloud': 'aws',
|
||||
'region': 'us-west-2'
|
||||
},
|
||||
'hybrid_search': True, # Remember to set this for hybrid search
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Initialize app
|
||||
app = App.from_config(config=config)
|
||||
|
||||
# Add documents
|
||||
app.add("/path/to/file.pdf", data_type="pdf_file", namespace="my-namespace")
|
||||
|
||||
# Query
|
||||
app.query("<YOUR QUESTION HERE>", namespace="my-namespace")
|
||||
|
||||
# Chat
|
||||
app.chat("<YOUR QUESTION HERE>", namespace="my-namespace")
|
||||
```
|
||||
|
||||
Under the hood, Embedchain fetches the relevant chunks from the documents you added by doing hybrid search on the pinecone index.
|
||||
If you have questions on how pinecone hybrid search works, please refer to their [offical documentation here](https://docs.pinecone.io/docs/hybrid-search).
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
23
embedchain/docs/components/vector-databases/qdrant.mdx
Normal file
23
embedchain/docs/components/vector-databases/qdrant.mdx
Normal file
@@ -0,0 +1,23 @@
|
||||
---
|
||||
title: Qdrant
|
||||
---
|
||||
|
||||
In order to use Qdrant as a vector database, set the environment variables `QDRANT_URL` and `QDRANT_API_KEY` which you can find on [Qdrant Dashboard](https://cloud.qdrant.io/).
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load qdrant configuration from yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
vectordb:
|
||||
provider: qdrant
|
||||
config:
|
||||
collection_name: my_qdrant_index
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
24
embedchain/docs/components/vector-databases/weaviate.mdx
Normal file
24
embedchain/docs/components/vector-databases/weaviate.mdx
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
title: Weaviate
|
||||
---
|
||||
|
||||
|
||||
In order to use Weaviate as a vector database, set the environment variables `WEAVIATE_ENDPOINT` and `WEAVIATE_API_KEY` which you can find on [Weaviate dashboard](https://console.weaviate.cloud/dashboard).
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
|
||||
# load weaviate configuration from yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
vectordb:
|
||||
provider: weaviate
|
||||
config:
|
||||
collection_name: my_weaviate_index
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
39
embedchain/docs/components/vector-databases/zilliz.mdx
Normal file
39
embedchain/docs/components/vector-databases/zilliz.mdx
Normal file
@@ -0,0 +1,39 @@
|
||||
---
|
||||
title: Zilliz
|
||||
---
|
||||
|
||||
Install related dependencies using the following command:
|
||||
|
||||
```bash
|
||||
pip install --upgrade 'embedchain[milvus]'
|
||||
```
|
||||
|
||||
Set the Zilliz environment variables `ZILLIZ_CLOUD_URI` and `ZILLIZ_CLOUD_TOKEN` which you can find it on their [cloud platform](https://cloud.zilliz.com/).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['ZILLIZ_CLOUD_URI'] = 'https://xxx.zillizcloud.com'
|
||||
os.environ['ZILLIZ_CLOUD_TOKEN'] = 'xxx'
|
||||
|
||||
# load zilliz configuration from yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
vectordb:
|
||||
provider: zilliz
|
||||
config:
|
||||
collection_name: 'zilliz_app'
|
||||
uri: https://xxxx.api.gcp-region.zillizcloud.com
|
||||
token: xxx
|
||||
vector_dim: 1536
|
||||
metric_type: L2
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
<Snippet file="missing-vector-db-tip.mdx" />
|
||||
45
embedchain/docs/contribution/dev.mdx
Normal file
45
embedchain/docs/contribution/dev.mdx
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
title: '👨💻 Development'
|
||||
description: 'Contribute to Embedchain framework development'
|
||||
---
|
||||
|
||||
Thank you for your interest in contributing to the EmbedChain project! We welcome your ideas and contributions to help improve the project. Please follow the instructions below to get started:
|
||||
|
||||
1. **Fork the repository**: Click on the "Fork" button at the top right corner of this repository page. This will create a copy of the repository in your own GitHub account.
|
||||
|
||||
2. **Install the required dependencies**: Ensure that you have the necessary dependencies installed in your Python environment. You can do this by running the following command:
|
||||
|
||||
```bash
|
||||
make install
|
||||
```
|
||||
|
||||
3. **Make changes in the code**: Create a new branch in your forked repository and make your desired changes in the codebase.
|
||||
4. **Format code**: Before creating a pull request, it's important to ensure that your code follows our formatting guidelines. Run the following commands to format the code:
|
||||
|
||||
```bash
|
||||
make lint format
|
||||
```
|
||||
|
||||
5. **Create a pull request**: When you are ready to contribute your changes, submit a pull request to the EmbedChain repository. Provide a clear and descriptive title for your pull request, along with a detailed description of the changes you have made.
|
||||
|
||||
## Team
|
||||
|
||||
### Authors
|
||||
|
||||
- Taranjeet Singh ([@taranjeetio](https://twitter.com/taranjeetio))
|
||||
- Deshraj Yadav ([@deshrajdry](https://twitter.com/deshrajdry))
|
||||
|
||||
### Citation
|
||||
|
||||
If you utilize this repository, please consider citing it with:
|
||||
|
||||
```
|
||||
@misc{embedchain,
|
||||
author = {Taranjeet Singh, Deshraj Yadav},
|
||||
title = {Embechain: The Open Source RAG Framework},
|
||||
year = {2023},
|
||||
publisher = {GitHub},
|
||||
journal = {GitHub repository},
|
||||
howpublished = {\url{https://github.com/embedchain/embedchain}},
|
||||
}
|
||||
```
|
||||
61
embedchain/docs/contribution/docs.mdx
Normal file
61
embedchain/docs/contribution/docs.mdx
Normal file
@@ -0,0 +1,61 @@
|
||||
---
|
||||
title: '📝 Documentation'
|
||||
description: 'Contribute to Embedchain docs'
|
||||
---
|
||||
|
||||
<Info>
|
||||
**Prerequisite** You should have installed Node.js (version 18.10.0 or
|
||||
higher).
|
||||
</Info>
|
||||
|
||||
Step 1. Install Mintlify on your OS:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```bash npm
|
||||
npm i -g mintlify
|
||||
```
|
||||
|
||||
```bash yarn
|
||||
yarn global add mintlify
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
Step 2. Go to the `docs/` directory (where you can find `mint.json`) and run the following command:
|
||||
|
||||
```bash
|
||||
mintlify dev
|
||||
```
|
||||
|
||||
The documentation website is now available at `http://localhost:3000`.
|
||||
|
||||
### Custom Ports
|
||||
|
||||
Mintlify uses port 3000 by default. You can use the `--port` flag to customize the port Mintlify runs on. For example, use this command to run in port 3333:
|
||||
|
||||
```bash
|
||||
mintlify dev --port 3333
|
||||
```
|
||||
|
||||
You will see an error like this if you try to run Mintlify in a port that's already taken:
|
||||
|
||||
```md
|
||||
Error: listen EADDRINUSE: address already in use :::3000
|
||||
```
|
||||
|
||||
## Mintlify Versions
|
||||
|
||||
Each CLI is linked to a specific version of Mintlify. Please update the CLI if your local website looks different than production.
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```bash npm
|
||||
npm i -g mintlify@latest
|
||||
```
|
||||
|
||||
```bash yarn
|
||||
yarn global upgrade mintlify
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user