Adding Native OpenSearch support for Mem0 (#2211)

This commit is contained in:
Seetha Rama Guptha
2025-02-20 11:42:12 +05:30
committed by GitHub
parent 6e781f616c
commit f4c0f98fde
9 changed files with 446 additions and 2 deletions

View File

@@ -13,7 +13,7 @@ install:
install_all:
poetry install
poetry run pip install groq together boto3 litellm ollama chromadb sentence_transformers vertexai \
google-generativeai elasticsearch
google-generativeai elasticsearch opensearch-py
# Format code with ruff
format:

View File

@@ -0,0 +1,59 @@
[OpenSearch](https://opensearch.org/) is an open-source, enterprise-grade search and observability suite that brings order to unstructured data at scale. OpenSearch supports k-NN (k-Nearest Neighbors) and allows you to store and retrieve high-dimensional vector embeddings efficiently.
### Installation
OpenSearch support requires additional dependencies. Install them with:
```bash
pip install opensearch>=2.8.0
```
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "opensearch",
"config": {
"collection_name": "mem0",
"host": "localhost",
"port": 9200,
"embedding_model_dims": 1536
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Let's see the available parameters for the `opensearch` config:
| Parameter | Description | Default Value |
| ---------------------- | -------------------------------------------------- | ------------- |
| `collection_name` | The name of the index to store the vectors | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `host` | The host where the OpenSearch server is running | `localhost` |
| `port` | The port where the OpenSearch server is running | `9200` |
| `api_key` | API key for authentication | `None` |
| `user` | Username for basic authentication | `None` |
| `password` | Password for basic authentication | `None` |
| `verify_certs` | Whether to verify SSL certificates | `False` |
| `auto_create_index` | Whether to automatically create the index | `True` |
| `use_ssl` | Whether to use SSL for connection | `False` |
### Features
- Fast and Efficient Vector Search
- Can be deployed on-premises, in containers, or on cloud platforms like AWS OpenSearch Service.
- Multiple Authentication and Security Methods (Basic Authentication, API Keys, LDAP, SAML, and OpenID Connect)
- Automatic index creation with optimized mappings for vector search
- Memory Optimization through Disk-Based Vector Search and Quantization
- Real-Time Analytics and Observability

View File

@@ -18,6 +18,7 @@ See the list of supported vector databases below.
<Card title="Azure AI Search" href="/components/vectordbs/dbs/azure_ai_search"></Card>
<Card title="Redis" href="/components/vectordbs/dbs/redis"></Card>
<Card title="Elasticsearch" href="/components/vectordbs/dbs/elasticsearch"></Card>
<Card title="OpenSearch" href="/components/vectordbs/dbs/opensearch"></Card>
</CardGroup>
## Usage

View File

@@ -122,7 +122,8 @@
"components/vectordbs/dbs/milvus",
"components/vectordbs/dbs/azure_ai_search",
"components/vectordbs/dbs/redis",
"components/vectordbs/dbs/elasticsearch"
"components/vectordbs/dbs/elasticsearch",
"components/vectordbs/dbs/opensearch"
]
}
]

View File

@@ -0,0 +1,42 @@
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, model_validator
class OpenSearchConfig(BaseModel):
collection_name: str = Field("mem0", description="Name of the index")
host: str = Field("localhost", description="OpenSearch host")
port: int = Field(9200, description="OpenSearch port")
user: Optional[str] = Field(None, description="Username for authentication")
password: Optional[str] = Field(None, description="Password for authentication")
api_key: Optional[str] = Field(None, description="API key for authentication (if applicable)")
embedding_model_dims: int = Field(1536, description="Dimension of the embedding vector")
verify_certs: bool = Field(False, description="Verify SSL certificates (default False for OpenSearch)")
use_ssl: bool = Field(False, description="Use SSL for connection (default False for OpenSearch)")
auto_create_index: bool = Field(True, description="Automatically create index during initialization")
@model_validator(mode="before")
@classmethod
def validate_auth(cls, values: Dict[str, Any]) -> Dict[str, Any]:
# Check if host is provided
if not values.get("host"):
raise ValueError("Host must be provided for OpenSearch")
# Authentication: Either API key or user/password must be provided
if not any([values.get("api_key"), (values.get("user") and values.get("password"))]):
raise ValueError("Either api_key or user/password must be provided for OpenSearch authentication")
return values
@model_validator(mode="before")
@classmethod
def validate_extra_fields(cls, values: Dict[str, Any]) -> Dict[str, Any]:
allowed_fields = set(cls.model_fields.keys())
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. "
f"Allowed fields: {', '.join(allowed_fields)}"
)
return values

View File

@@ -68,6 +68,7 @@ class VectorStoreFactory:
"azure_ai_search": "mem0.vector_stores.azure_ai_search.AzureAISearch",
"redis": "mem0.vector_stores.redis.RedisDB",
"elasticsearch": "mem0.vector_stores.elasticsearch.ElasticsearchDB",
"opensearch": "mem0.vector_stores.opensearch.OpenSearchDB"
}
@classmethod

View File

@@ -18,6 +18,7 @@ class VectorStoreConfig(BaseModel):
"azure_ai_search": "AzureAISearchConfig",
"redis": "RedisDBConfig",
"elasticsearch": "ElasticsearchConfig",
"opensearch": "OpenSearchConfig",
}
@model_validator(mode="after")

View File

@@ -0,0 +1,189 @@
import logging
from typing import Any, Dict, List, Optional
try:
from opensearchpy import OpenSearch
from opensearchpy.helpers import bulk
except ImportError:
raise ImportError("OpenSearch requires extra dependencies. Install with `pip install opensearch-py`") from None
from pydantic import BaseModel
from mem0.configs.vector_stores.opensearch import OpenSearchConfig
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: str
score: float
payload: Dict
class OpenSearchDB(VectorStoreBase):
def __init__(self, **kwargs):
config = OpenSearchConfig(**kwargs)
# Initialize OpenSearch client
self.client = OpenSearch(
hosts=[{"host": config.host, "port": config.port or 9200}],
http_auth=(config.user, config.password) if (config.user and config.password) else None,
use_ssl=config.use_ssl,
verify_certs=config.verify_certs,
)
self.collection_name = config.collection_name
self.vector_dim = config.embedding_model_dims
# Create index only if auto_create_index is True
if config.auto_create_index:
self.create_index()
def create_index(self) -> None:
"""Create OpenSearch index with proper mappings if it doesn't exist."""
index_settings = {
# ToDo change replicas to 1
"settings": {
"index": {"number_of_replicas": 1, "number_of_shards": 5, "refresh_interval": "1s", "knn": True}
},
"mappings": {
"properties": {
"text": {"type": "text"},
"vector": {
"type": "knn_vector",
"dimension": self.vector_dim
},
"metadata": {"type": "object", "properties": {"user_id": {"type": "keyword"}}},
}
},
}
if not self.client.indices.exists(index=self.collection_name):
self.client.indices.create(index=self.collection_name, body=index_settings)
logger.info(f"Created index {self.collection_name}")
else:
logger.info(f"Index {self.collection_name} already exists")
def create_col(self, name: str, vector_size: int) -> None:
"""Create a new collection (index in OpenSearch)."""
index_settings = {
"mappings": {
"properties": {
"vector": {
"type": "knn_vector",
"dimension": vector_size,
"method": { "engine": "lucene", "name": "hnsw", "space_type": "cosinesimil"},
},
"payload": {"type": "object"},
"id": {"type": "keyword"},
}
}
}
if not self.client.indices.exists(index=name):
self.client.indices.create(index=name, body=index_settings)
logger.info(f"Created index {name}")
def insert(
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
) -> List[OutputData]:
"""Insert vectors into the index."""
if not ids:
ids = [str(i) for i in range(len(vectors))]
if payloads is None:
payloads = [{} for _ in range(len(vectors))]
actions = []
for i, (vec, id_) in enumerate(zip(vectors, ids)):
action = {
"_index": self.collection_name,
"_id": id_,
"_source": {
"vector": vec,
"metadata": payloads[i], # Store metadata in the metadata field
},
}
actions.append(action)
bulk(self.client, actions)
results = []
for i, id_ in enumerate(ids):
results.append(OutputData(id=id_, score=1.0, payload=payloads[i]))
return results
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
"""Search for similar vectors using OpenSearch k-NN search with pre-filtering."""
search_query = {
"size": limit,
"query": {
"knn": {
"vector": {
"vector": query,
"k": limit,
}
}
}
}
if filters:
filter_conditions = [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]
search_query["query"]["knn"]["vector"]["filter"] = { "bool": {"filter": filter_conditions} }
response = self.client.search(index=self.collection_name, body=search_query)
results = [
OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("metadata", {}))
for hit in response["hits"]["hits"]
]
return results
def delete(self, vector_id: str) -> None:
"""Delete a vector by ID."""
self.client.delete(index=self.collection_name, id=vector_id)
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
"""Update a vector and its payload."""
doc = {}
if vector is not None:
doc["vector"] = vector
if payload is not None:
doc["metadata"] = payload
self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc})
def get(self, vector_id: str) -> Optional[OutputData]:
"""Retrieve a vector by ID."""
try:
response = self.client.get(index=self.collection_name, id=vector_id)
return OutputData(id=response["_id"], score=1.0, payload=response["_source"].get("metadata", {}))
except Exception as e:
logger.error(f"Error retrieving vector {vector_id}: {e}")
return None
def list_cols(self) -> List[str]:
"""List all collections (indices)."""
return list(self.client.indices.get_alias().keys())
def delete_col(self) -> None:
"""Delete a collection (index)."""
self.client.indices.delete(index=self.collection_name)
def col_info(self, name: str) -> Any:
"""Get information about a collection (index)."""
return self.client.indices.get(index=name)
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
"""List all memories."""
query = {"query": {"match_all": {}}}
if filters:
query["query"] = {"bool": {"must": [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]}}
if limit:
query["size"] = limit
response = self.client.search(index=self.collection_name, body=query)
return [[OutputData(id=hit["_id"], score=1.0, payload=hit["_source"].get("metadata", {})) for hit in response["hits"]["hits"]]]

View File

@@ -0,0 +1,150 @@
import os
import unittest
from unittest.mock import MagicMock, patch
import dotenv
try:
from opensearchpy import OpenSearch
except ImportError:
raise ImportError(
"OpenSearch requires extra dependencies. Install with `pip install opensearch-py`"
) from None
from mem0.vector_stores.opensearch import OpenSearchDB
class TestOpenSearchDB(unittest.TestCase):
@classmethod
def setUpClass(cls):
dotenv.load_dotenv()
cls.original_env = {
'OS_URL': os.getenv('OS_URL', 'http://localhost:9200'),
'OS_USERNAME': os.getenv('OS_USERNAME', 'test_user'),
'OS_PASSWORD': os.getenv('OS_PASSWORD', 'test_password')
}
os.environ['OS_URL'] = 'http://localhost'
os.environ['OS_USERNAME'] = 'test_user'
os.environ['OS_PASSWORD'] = 'test_password'
def setUp(self):
self.client_mock = MagicMock(spec=OpenSearch)
self.client_mock.indices = MagicMock()
self.client_mock.indices.exists = MagicMock(return_value=False)
self.client_mock.indices.create = MagicMock()
self.client_mock.indices.delete = MagicMock()
self.client_mock.indices.get_alias = MagicMock()
self.client_mock.get = MagicMock()
self.client_mock.update = MagicMock()
self.client_mock.delete = MagicMock()
self.client_mock.search = MagicMock()
patcher = patch('mem0.vector_stores.opensearch.OpenSearch', return_value=self.client_mock)
self.mock_os = patcher.start()
self.addCleanup(patcher.stop)
self.os_db = OpenSearchDB(
host=os.getenv('OS_URL'),
port=9200,
collection_name="test_collection",
embedding_model_dims=1536,
user=os.getenv('OS_USERNAME'),
password=os.getenv('OS_PASSWORD'),
verify_certs=False,
use_ssl=False,
auto_create_index=False
)
self.client_mock.reset_mock()
@classmethod
def tearDownClass(cls):
for key, value in cls.original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
def tearDown(self):
self.client_mock.reset_mock()
def test_create_index(self):
self.client_mock.indices.exists.return_value = False
self.os_db.create_index()
self.client_mock.indices.create.assert_called_once()
create_args = self.client_mock.indices.create.call_args[1]
self.assertEqual(create_args["index"], "test_collection")
mappings = create_args["body"]["mappings"]["properties"]
self.assertEqual(mappings["vector"]["type"], "knn_vector")
self.assertEqual(mappings["vector"]["dimension"], 1536)
self.client_mock.reset_mock()
self.client_mock.indices.exists.return_value = True
self.os_db.create_index()
self.client_mock.indices.create.assert_not_called()
def test_insert(self):
vectors = [[0.1] * 1536, [0.2] * 1536]
payloads = [{"key1": "value1"}, {"key2": "value2"}]
ids = ["id1", "id2"]
with patch('mem0.vector_stores.opensearch.bulk') as mock_bulk:
mock_bulk.return_value = (2, [])
results = self.os_db.insert(vectors=vectors, payloads=payloads, ids=ids)
mock_bulk.assert_called_once()
actions = mock_bulk.call_args[0][1]
self.assertEqual(actions[0]["_index"], "test_collection")
self.assertEqual(actions[0]["_id"], "id1")
self.assertEqual(actions[0]["_source"]["vector"], vectors[0])
self.assertEqual(actions[0]["_source"]["metadata"], payloads[0])
self.assertEqual(len(results), 2)
self.assertEqual(results[0].id, "id1")
self.assertEqual(results[0].payload, payloads[0])
def test_get(self):
mock_response = {"_id": "id1", "_source": {"metadata": {"key1": "value1"}}}
self.client_mock.get.return_value = mock_response
result = self.os_db.get("id1")
self.client_mock.get.assert_called_once_with(index="test_collection", id="id1")
self.assertIsNotNone(result)
self.assertEqual(result.id, "id1")
self.assertEqual(result.payload, {"key1": "value1"})
def test_update(self):
vector = [0.3] * 1536
payload = {"key3": "value3"}
self.os_db.update("id1", vector=vector, payload=payload)
self.client_mock.update.assert_called_once()
update_args = self.client_mock.update.call_args[1]
self.assertEqual(update_args["index"], "test_collection")
self.assertEqual(update_args["id"], "id1")
self.assertEqual(update_args["body"], {"doc": {"vector": vector, "metadata": payload}})
def test_list_cols(self):
self.client_mock.indices.get_alias.return_value = {"test_collection": {}}
result = self.os_db.list_cols()
self.client_mock.indices.get_alias.assert_called_once()
self.assertEqual(result, ["test_collection"])
def test_search(self):
mock_response = {"hits": {"hits": [{"_id": "id1", "_score": 0.8, "_source": {"vector": [0.1] * 1536, "metadata": {"key1": "value1"}}}]}}
self.client_mock.search.return_value = mock_response
query_vector = [0.1] * 1536
results = self.os_db.search(query=query_vector, limit=5)
self.client_mock.search.assert_called_once()
search_args = self.client_mock.search.call_args[1]
self.assertEqual(search_args["index"], "test_collection")
body = search_args["body"]
self.assertIn("knn", body["query"])
self.assertIn("vector", body["query"]["knn"])
self.assertEqual(body["query"]["knn"]["vector"]["vector"], query_vector)
self.assertEqual(body["query"]["knn"]["vector"]["k"], 5)
self.assertEqual(len(results), 1)
self.assertEqual(results[0].id, "id1")
self.assertEqual(results[0].score, 0.8)
self.assertEqual(results[0].payload, {"key1": "value1"})
def test_delete(self):
self.os_db.delete(vector_id="id1")
self.client_mock.delete.assert_called_once_with(index="test_collection", id="id1")
def test_delete_col(self):
self.os_db.delete_col()
self.client_mock.indices.delete.assert_called_once_with(index="test_collection")