Adding Native OpenSearch support for Mem0 (#2211)
This commit is contained in:
committed by
GitHub
parent
6e781f616c
commit
f4c0f98fde
189
mem0/vector_stores/opensearch.py
Normal file
189
mem0/vector_stores/opensearch.py
Normal file
@@ -0,0 +1,189 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
try:
|
||||
from opensearchpy import OpenSearch
|
||||
from opensearchpy.helpers import bulk
|
||||
except ImportError:
|
||||
raise ImportError("OpenSearch requires extra dependencies. Install with `pip install opensearch-py`") from None
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from mem0.configs.vector_stores.opensearch import OpenSearchConfig
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OutputData(BaseModel):
|
||||
id: str
|
||||
score: float
|
||||
payload: Dict
|
||||
|
||||
|
||||
class OpenSearchDB(VectorStoreBase):
|
||||
def __init__(self, **kwargs):
|
||||
config = OpenSearchConfig(**kwargs)
|
||||
|
||||
# Initialize OpenSearch client
|
||||
self.client = OpenSearch(
|
||||
hosts=[{"host": config.host, "port": config.port or 9200}],
|
||||
http_auth=(config.user, config.password) if (config.user and config.password) else None,
|
||||
use_ssl=config.use_ssl,
|
||||
verify_certs=config.verify_certs,
|
||||
)
|
||||
|
||||
self.collection_name = config.collection_name
|
||||
self.vector_dim = config.embedding_model_dims
|
||||
|
||||
# Create index only if auto_create_index is True
|
||||
if config.auto_create_index:
|
||||
self.create_index()
|
||||
|
||||
def create_index(self) -> None:
|
||||
"""Create OpenSearch index with proper mappings if it doesn't exist."""
|
||||
index_settings = {
|
||||
# ToDo change replicas to 1
|
||||
"settings": {
|
||||
"index": {"number_of_replicas": 1, "number_of_shards": 5, "refresh_interval": "1s", "knn": True}
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"vector": {
|
||||
"type": "knn_vector",
|
||||
"dimension": self.vector_dim
|
||||
},
|
||||
"metadata": {"type": "object", "properties": {"user_id": {"type": "keyword"}}},
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
if not self.client.indices.exists(index=self.collection_name):
|
||||
self.client.indices.create(index=self.collection_name, body=index_settings)
|
||||
logger.info(f"Created index {self.collection_name}")
|
||||
else:
|
||||
logger.info(f"Index {self.collection_name} already exists")
|
||||
|
||||
def create_col(self, name: str, vector_size: int) -> None:
|
||||
"""Create a new collection (index in OpenSearch)."""
|
||||
index_settings = {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"vector": {
|
||||
"type": "knn_vector",
|
||||
"dimension": vector_size,
|
||||
"method": { "engine": "lucene", "name": "hnsw", "space_type": "cosinesimil"},
|
||||
},
|
||||
"payload": {"type": "object"},
|
||||
"id": {"type": "keyword"},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if not self.client.indices.exists(index=name):
|
||||
self.client.indices.create(index=name, body=index_settings)
|
||||
logger.info(f"Created index {name}")
|
||||
|
||||
def insert(
|
||||
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
|
||||
) -> List[OutputData]:
|
||||
"""Insert vectors into the index."""
|
||||
if not ids:
|
||||
ids = [str(i) for i in range(len(vectors))]
|
||||
|
||||
if payloads is None:
|
||||
payloads = [{} for _ in range(len(vectors))]
|
||||
|
||||
actions = []
|
||||
for i, (vec, id_) in enumerate(zip(vectors, ids)):
|
||||
action = {
|
||||
"_index": self.collection_name,
|
||||
"_id": id_,
|
||||
"_source": {
|
||||
"vector": vec,
|
||||
"metadata": payloads[i], # Store metadata in the metadata field
|
||||
},
|
||||
}
|
||||
actions.append(action)
|
||||
|
||||
bulk(self.client, actions)
|
||||
|
||||
results = []
|
||||
for i, id_ in enumerate(ids):
|
||||
results.append(OutputData(id=id_, score=1.0, payload=payloads[i]))
|
||||
return results
|
||||
|
||||
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
|
||||
"""Search for similar vectors using OpenSearch k-NN search with pre-filtering."""
|
||||
search_query = {
|
||||
"size": limit,
|
||||
"query": {
|
||||
"knn": {
|
||||
"vector": {
|
||||
"vector": query,
|
||||
"k": limit,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if filters:
|
||||
filter_conditions = [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]
|
||||
search_query["query"]["knn"]["vector"]["filter"] = { "bool": {"filter": filter_conditions} }
|
||||
|
||||
response = self.client.search(index=self.collection_name, body=search_query)
|
||||
|
||||
results = [
|
||||
OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("metadata", {}))
|
||||
for hit in response["hits"]["hits"]
|
||||
]
|
||||
return results
|
||||
|
||||
def delete(self, vector_id: str) -> None:
|
||||
"""Delete a vector by ID."""
|
||||
self.client.delete(index=self.collection_name, id=vector_id)
|
||||
|
||||
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
|
||||
"""Update a vector and its payload."""
|
||||
doc = {}
|
||||
if vector is not None:
|
||||
doc["vector"] = vector
|
||||
if payload is not None:
|
||||
doc["metadata"] = payload
|
||||
|
||||
self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc})
|
||||
|
||||
def get(self, vector_id: str) -> Optional[OutputData]:
|
||||
"""Retrieve a vector by ID."""
|
||||
try:
|
||||
response = self.client.get(index=self.collection_name, id=vector_id)
|
||||
return OutputData(id=response["_id"], score=1.0, payload=response["_source"].get("metadata", {}))
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector {vector_id}: {e}")
|
||||
return None
|
||||
|
||||
def list_cols(self) -> List[str]:
|
||||
"""List all collections (indices)."""
|
||||
return list(self.client.indices.get_alias().keys())
|
||||
|
||||
def delete_col(self) -> None:
|
||||
"""Delete a collection (index)."""
|
||||
self.client.indices.delete(index=self.collection_name)
|
||||
|
||||
def col_info(self, name: str) -> Any:
|
||||
"""Get information about a collection (index)."""
|
||||
return self.client.indices.get(index=name)
|
||||
|
||||
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
|
||||
"""List all memories."""
|
||||
query = {"query": {"match_all": {}}}
|
||||
|
||||
if filters:
|
||||
query["query"] = {"bool": {"must": [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]}}
|
||||
|
||||
if limit:
|
||||
query["size"] = limit
|
||||
|
||||
response = self.client.search(index=self.collection_name, body=query)
|
||||
return [[OutputData(id=hit["_id"], score=1.0, payload=hit["_source"].get("metadata", {})) for hit in response["hits"]["hits"]]]
|
||||
Reference in New Issue
Block a user