Adding Native OpenSearch support for Mem0 (#2211)
This commit is contained in:
committed by
GitHub
parent
6e781f616c
commit
f4c0f98fde
59
docs/components/vectordbs/dbs/opensearch.mdx
Normal file
59
docs/components/vectordbs/dbs/opensearch.mdx
Normal file
@@ -0,0 +1,59 @@
|
||||
[OpenSearch](https://opensearch.org/) is an open-source, enterprise-grade search and observability suite that brings order to unstructured data at scale. OpenSearch supports k-NN (k-Nearest Neighbors) and allows you to store and retrieve high-dimensional vector embeddings efficiently.
|
||||
|
||||
### Installation
|
||||
|
||||
OpenSearch support requires additional dependencies. Install them with:
|
||||
|
||||
```bash
|
||||
pip install opensearch>=2.8.0
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "opensearch",
|
||||
"config": {
|
||||
"collection_name": "mem0",
|
||||
"host": "localhost",
|
||||
"port": 9200,
|
||||
"embedding_model_dims": 1536
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Let's see the available parameters for the `opensearch` config:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| ---------------------- | -------------------------------------------------- | ------------- |
|
||||
| `collection_name` | The name of the index to store the vectors | `mem0` |
|
||||
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `host` | The host where the OpenSearch server is running | `localhost` |
|
||||
| `port` | The port where the OpenSearch server is running | `9200` |
|
||||
| `api_key` | API key for authentication | `None` |
|
||||
| `user` | Username for basic authentication | `None` |
|
||||
| `password` | Password for basic authentication | `None` |
|
||||
| `verify_certs` | Whether to verify SSL certificates | `False` |
|
||||
| `auto_create_index` | Whether to automatically create the index | `True` |
|
||||
| `use_ssl` | Whether to use SSL for connection | `False` |
|
||||
|
||||
### Features
|
||||
|
||||
- Fast and Efficient Vector Search
|
||||
- Can be deployed on-premises, in containers, or on cloud platforms like AWS OpenSearch Service.
|
||||
- Multiple Authentication and Security Methods (Basic Authentication, API Keys, LDAP, SAML, and OpenID Connect)
|
||||
- Automatic index creation with optimized mappings for vector search
|
||||
- Memory Optimization through Disk-Based Vector Search and Quantization
|
||||
- Real-Time Analytics and Observability
|
||||
@@ -18,6 +18,7 @@ See the list of supported vector databases below.
|
||||
<Card title="Azure AI Search" href="/components/vectordbs/dbs/azure_ai_search"></Card>
|
||||
<Card title="Redis" href="/components/vectordbs/dbs/redis"></Card>
|
||||
<Card title="Elasticsearch" href="/components/vectordbs/dbs/elasticsearch"></Card>
|
||||
<Card title="OpenSearch" href="/components/vectordbs/dbs/opensearch"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -122,7 +122,8 @@
|
||||
"components/vectordbs/dbs/milvus",
|
||||
"components/vectordbs/dbs/azure_ai_search",
|
||||
"components/vectordbs/dbs/redis",
|
||||
"components/vectordbs/dbs/elasticsearch"
|
||||
"components/vectordbs/dbs/elasticsearch",
|
||||
"components/vectordbs/dbs/opensearch"
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user