Reverting the tools commit (#2404)

This commit is contained in:
Parshva Daftari
2025-03-20 00:09:00 +05:30
committed by GitHub
parent 1aed611539
commit ee66e0c954
21 changed files with 990 additions and 475 deletions

View File

@@ -3,7 +3,8 @@ from typing import Dict, List, Optional
try:
import google.generativeai as genai
from google.generativeai import GenerativeModel
from google.generativeai import GenerativeModel, protos
from google.generativeai.types import content_types
except ImportError:
raise ImportError(
"The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'."
@@ -14,17 +15,7 @@ from mem0.llms.base import LLMBase
class GeminiLLM(LLMBase):
"""
A wrapper for Google's Gemini language model, integrating it with the LLMBase class.
"""
def __init__(self, config: Optional[BaseLlmConfig] = None):
"""
Initializes the Gemini LLM with the provided configuration.
Args:
config (Optional[BaseLlmConfig]): Configuration object for the model.
"""
super().__init__(config)
if not self.config.model:
@@ -34,25 +25,51 @@ class GeminiLLM(LLMBase):
genai.configure(api_key=api_key)
self.client = GenerativeModel(model_name=self.config.model)
def _reformat_messages(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]:
def _parse_response(self, response, tools):
"""
Reformats messages to match the Gemini API's expected structure.
Process the response based on whether tools are used or not.
Args:
messages (List[Dict[str, str]]): A list of messages with 'role' and 'content' keys.
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
List[Dict[str, str]]: Reformatted messages in the required format.
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": (content if (content := response.candidates[0].content.parts[0].text) else None),
"tool_calls": [],
}
for part in response.candidates[0].content.parts:
if fn := part.function_call:
if isinstance(fn, protos.FunctionCall):
fn_call = type(fn).to_dict(fn)
processed_response["tool_calls"].append({"name": fn_call["name"], "arguments": fn_call["args"]})
continue
processed_response["tool_calls"].append({"name": fn.name, "arguments": fn.args})
return processed_response
else:
return response.candidates[0].content.parts[0].text
def _reformat_messages(self, messages: List[Dict[str, str]]):
"""
Reformat messages for Gemini.
Args:
messages: The list of messages provided in the request.
Returns:
list: The list of messages in the required format.
"""
new_messages = []
for message in messages:
if message["role"] == "system":
content = (
"THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
)
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
else:
content = message["content"]
@@ -65,33 +82,90 @@ class GeminiLLM(LLMBase):
return new_messages
def generate_response(
self, messages: List[Dict[str, str]], response_format: Optional[Dict] = None
) -> str:
def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
Generates a response from Gemini based on the given conversation history.
Reformat tools for Gemini.
Args:
messages (List[Dict[str, str]]): List of message dictionaries containing 'role' and 'content'.
response_format (Optional[Dict]): Specifies the response format (e.g., JSON schema).
tools: The list of tools provided in the request.
Returns:
str: The generated response as text.
list: The list of tools in the required format.
"""
def remove_additional_properties(data):
"""Recursively removes 'additionalProperties' from nested dictionaries."""
if isinstance(data, dict):
filtered_dict = {
key: remove_additional_properties(value)
for key, value in data.items()
if not (key == "additionalProperties")
}
return filtered_dict
else:
return data
new_tools = []
if tools:
for tool in tools:
func = tool["function"].copy()
new_tools.append({"function_declarations": [remove_additional_properties(func)]})
# TODO: temporarily ignore it to pass tests, will come back to update according to standards later.
# return content_types.to_function_library(new_tools)
return new_tools
else:
return None
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Gemini.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format for the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"temperature": self.config.temperature,
"max_output_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format and response_format.get("type") == "json_object":
if response_format is not None and response_format["type"] == "json_object":
params["response_mime_type"] = "application/json"
if "schema" in response_format:
params["response_schema"] = response_format["schema"]
if tool_choice:
tool_config = content_types.to_tool_config(
{
"function_calling_config": {
"mode": tool_choice,
"allowed_function_names": (
[tool["function"]["name"] for tool in tools] if tool_choice == "any" else None
),
}
}
)
response = self.client.generate_content(
contents=self._reformat_messages(messages),
tools=self._reformat_tools(tools),
generation_config=genai.GenerationConfig(**params),
tool_config=tool_config,
)
return response.candidates[0].content.parts[0].text
return self._parse_response(response, tools)