Fix all lint errors (#2627)
This commit is contained in:
@@ -3,4 +3,4 @@ import importlib.metadata
|
||||
__version__ = importlib.metadata.version("mem0ai")
|
||||
|
||||
from mem0.client.main import AsyncMemoryClient, MemoryClient # noqa
|
||||
from mem0.memory.main import Memory, AsyncMemory # noqa
|
||||
from mem0.memory.main import AsyncMemory, Memory # noqa
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import hashlib
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
import hashlib
|
||||
from functools import wraps
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
import logging
|
||||
from typing import Literal, Optional
|
||||
|
||||
logging.getLogger("transformers").setLevel(logging.WARNING)
|
||||
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
|
||||
logging.getLogger("huggingface_hub").setLevel(logging.WARNING)
|
||||
|
||||
from openai import OpenAI
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
logging.getLogger("transformers").setLevel(logging.WARNING)
|
||||
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
|
||||
logging.getLogger("huggingface_hub").setLevel(logging.WARNING)
|
||||
|
||||
class HuggingFaceEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
from typing import Literal, Optional
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
|
||||
@@ -60,9 +60,9 @@ class MemoryGraph:
|
||||
embedding_dims = self.config.embedder.config["embedding_dims"]
|
||||
create_vector_index_query = f"CREATE VECTOR INDEX memzero ON :Entity(embedding) WITH CONFIG {{'dimension': {embedding_dims}, 'capacity': 1000, 'metric': 'cos'}};"
|
||||
self.graph.query(create_vector_index_query, params={})
|
||||
create_label_prop_index_query = f"CREATE INDEX ON :Entity(user_id);"
|
||||
create_label_prop_index_query = "CREATE INDEX ON :Entity(user_id);"
|
||||
self.graph.query(create_label_prop_index_query, params={})
|
||||
create_label_index_query = f"CREATE INDEX ON :Entity;"
|
||||
create_label_index_query = "CREATE INDEX ON :Entity;"
|
||||
self.graph.query(create_label_index_query, params={})
|
||||
|
||||
def add(self, data, filters):
|
||||
@@ -269,8 +269,8 @@ class MemoryGraph:
|
||||
for node in node_list:
|
||||
n_embedding = self.embedding_model.embed(node)
|
||||
|
||||
cypher_query = f"""
|
||||
MATCH (n:Entity {{user_id: $user_id}})-[r]->(m:Entity)
|
||||
cypher_query = """
|
||||
MATCH (n:Entity {user_id: $user_id})-[r]->(m:Entity)
|
||||
WHERE n.embedding IS NOT NULL
|
||||
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
|
||||
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
|
||||
@@ -279,7 +279,7 @@ class MemoryGraph:
|
||||
WHERE similarity >= $threshold
|
||||
RETURN node1.user_id AS source, id(node1) AS source_id, type(r) AS relationship, id(r) AS relation_id, node2.user_id AS destination, id(node2) AS destination_id, similarity
|
||||
UNION
|
||||
MATCH (n:Entity {{user_id: $user_id}})<-[r]-(m:Entity)
|
||||
MATCH (n:Entity {user_id: $user_id})<-[r]-(m:Entity)
|
||||
WHERE n.embedding IS NOT NULL
|
||||
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
|
||||
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
|
||||
@@ -481,7 +481,7 @@ class MemoryGraph:
|
||||
return entity_list
|
||||
|
||||
def _search_source_node(self, source_embedding, user_id, threshold=0.9):
|
||||
cypher = f"""
|
||||
cypher = """
|
||||
CALL vector_search.search("memzero", 1, $source_embedding)
|
||||
YIELD distance, node, similarity
|
||||
WITH node AS source_candidate, similarity
|
||||
@@ -499,7 +499,7 @@ class MemoryGraph:
|
||||
return result
|
||||
|
||||
def _search_destination_node(self, destination_embedding, user_id, threshold=0.9):
|
||||
cypher = f"""
|
||||
cypher = """
|
||||
CALL vector_search.search("memzero", 1, $destination_embedding)
|
||||
YIELD distance, node, similarity
|
||||
WITH node AS destination_candidate, similarity
|
||||
|
||||
@@ -41,7 +41,7 @@ def get_or_create_user_id(vector_store):
|
||||
existing = vector_store.get(vector_id=VECTOR_ID)
|
||||
if existing and hasattr(existing, "payload") and existing.payload and "user_id" in existing.payload:
|
||||
return existing.payload["user_id"]
|
||||
except:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# If we get here, we need to insert the user_id
|
||||
@@ -50,7 +50,7 @@ def get_or_create_user_id(vector_store):
|
||||
vector_store.insert(
|
||||
vectors=[[0.0] * dims], payloads=[{"user_id": user_id, "type": "user_identity"}], ids=[VECTOR_ID]
|
||||
)
|
||||
except:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return user_id
|
||||
|
||||
Reference in New Issue
Block a user