Fix all lint errors (#2627)

This commit is contained in:
Dev Khant
2025-05-06 01:16:02 +05:30
committed by GitHub
parent 725a1aa114
commit ec1d7a45d3
50 changed files with 586 additions and 570 deletions

View File

@@ -1,11 +1,12 @@
import json
import argparse
from metrics.utils import calculate_metrics, calculate_bleu_scores
from metrics.llm_judge import evaluate_llm_judge
from collections import defaultdict
from tqdm import tqdm
import concurrent.futures
import json
import threading
from collections import defaultdict
from metrics.llm_judge import evaluate_llm_judge
from metrics.utils import calculate_bleu_scores, calculate_metrics
from tqdm import tqdm
def process_item(item_data):

View File

@@ -1,6 +1,7 @@
import pandas as pd
import json
import pandas as pd
# Load the evaluation metrics data
with open('evaluation_metrics.json', 'r') as f:
data = json.load(f)

View File

@@ -1,8 +1,9 @@
from openai import OpenAI
import argparse
import json
from collections import defaultdict
import numpy as np
import argparse
from openai import OpenAI
client = OpenAI()

View File

@@ -10,22 +10,17 @@ Borrowed from https://github.com/WujiangXu/AgenticMemory/blob/main/utils.py
}
"""
import re
import string
import numpy as np
from typing import List, Dict, Union
import statistics
from collections import defaultdict
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from bert_score import score as bert_score
from typing import Dict, List, Union
import nltk
from bert_score import score as bert_score
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
from nltk.translate.meteor_score import meteor_score
from rouge_score import rouge_scorer
from sentence_transformers import SentenceTransformer
import logging
from dataclasses import dataclass
from pathlib import Path
from openai import OpenAI
# from load_dataset import load_locomo_dataset, QA, Turn, Session, Conversation
from sentence_transformers.util import pytorch_cos_sim
@@ -71,7 +66,7 @@ def calculate_bleu_scores(prediction: str, reference: str) -> Dict[str, float]:
for n, weights in enumerate(weights_list, start=1):
try:
score = sentence_bleu(ref_tokens, pred_tokens, weights=weights, smoothing_function=smooth)
except Exception:
except Exception as e:
print(f"Error calculating BLEU score: {e}")
score = 0.0
scores[f'bleu{n}'] = score
@@ -158,21 +153,13 @@ def calculate_metrics(prediction: str, reference: str) -> Dict[str, float]:
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
# Calculate all scores
rouge_scores = 0 #calculate_rouge_scores(prediction, reference)
bleu_scores = calculate_bleu_scores(prediction, reference)
bert_scores = 0 # calculate_bert_scores(prediction, reference)
meteor = 0 # calculate_meteor_score(prediction, reference)
sbert_similarity = 0 # calculate_sentence_similarity(prediction, reference)
# Combine all metrics
metrics = {
"exact_match": exact_match,
"f1": f1,
# **rouge_scores,
**bleu_scores,
# **bert_scores,
# "meteor": meteor,
# "sbert_similarity": sbert_similarity
}
return metrics

View File

@@ -1,14 +1,14 @@
import argparse
import os
import json
from src.langmem import LangMemManager
from src.memzero.add import MemoryADD
from src.memzero.search import MemorySearch
from src.utils import TECHNIQUES, METHODS
import argparse
from src.rag import RAGManager
from src.langmem import LangMemManager
from src.zep.search import ZepSearch
from src.zep.add import ZepAdd
from src.openai.predict import OpenAIPredict
from src.rag import RAGManager
from src.utils import METHODS, TECHNIQUES
from src.zep.add import ZepAdd
from src.zep.search import ZepSearch
class Experiment:

View File

@@ -1,28 +1,24 @@
import json
import multiprocessing as mp
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore
from langgraph.utils.config import get_store
from langmem import (
create_manage_memory_tool,
create_search_memory_tool
)
import time
import multiprocessing as mp
import json
from functools import partial
import os
from tqdm import tqdm
from langmem import create_manage_memory_tool, create_search_memory_tool
from openai import OpenAI
from collections import defaultdict
from dotenv import load_dotenv
from prompts import ANSWER_PROMPT
from tqdm import tqdm
load_dotenv()
client = OpenAI()
from jinja2 import Template
ANSWER_PROMPT_TEMPLATE = Template(ANSWER_PROMPT)

View File

@@ -1,11 +1,13 @@
from mem0 import MemoryClient
import json
import time
import os
import threading
from tqdm import tqdm
import time
from concurrent.futures import ThreadPoolExecutor
from dotenv import load_dotenv
from tqdm import tqdm
from mem0 import MemoryClient
load_dotenv()

View File

@@ -1,14 +1,16 @@
import json
import os
import time
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
from mem0 import MemoryClient
import json
import time
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from prompts import ANSWER_PROMPT_GRAPH, ANSWER_PROMPT
import os
from dotenv import load_dotenv
from prompts import ANSWER_PROMPT, ANSWER_PROMPT_GRAPH
from tqdm import tqdm
from mem0 import MemoryClient
load_dotenv()

View File

@@ -1,12 +1,13 @@
from openai import OpenAI
import os
import argparse
import json
from jinja2 import Template
from tqdm import tqdm
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
import argparse
from jinja2 import Template
from openai import OpenAI
from tqdm import tqdm
load_dotenv()

View File

@@ -1,13 +1,14 @@
from openai import OpenAI
import json
import numpy as np
from tqdm import tqdm
from jinja2 import Template
import tiktoken
import os
import time
from collections import defaultdict
import os
import numpy as np
import tiktoken
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from tqdm import tqdm
load_dotenv()

View File

@@ -1,6 +1,7 @@
import argparse
import json
import os
from dotenv import load_dotenv
from tqdm import tqdm
from zep_cloud import Message

View File

@@ -1,16 +1,16 @@
import argparse
import json
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from prompts import ANSWER_PROMPT_ZEP
from tqdm import tqdm
from zep_cloud import EntityEdge, EntityNode
from zep_cloud.client import Zep
import json
import os
import pandas as pd
import time
from prompts import ANSWER_PROMPT_ZEP
load_dotenv()
@@ -52,7 +52,6 @@ class ZepSearch:
while retries < max_retries:
try:
user_id = f"run_id_{run_id}_experiment_user_{idx}"
session_id = f"run_id_{run_id}_experiment_session_{idx}"
edges_results = (self.zep_client.graph.search(user_id=user_id, reranker='cross_encoder', query=query, scope='edges', limit=20)).edges
node_results = (self.zep_client.graph.search(user_id=user_id, reranker='rrf', query=query, scope='nodes', limit=20)).nodes
context = self.compose_search_context(edges_results, node_results)