Add configs to llm docs (#1707)

This commit is contained in:
Dev Khant
2024-08-15 21:13:00 +05:30
committed by GitHub
parent c0232a7d97
commit eb7a7e09eb
14 changed files with 404 additions and 303 deletions

View File

@@ -1,302 +0,0 @@
---
title: Supported LLMs
---
## Overview
Mem0 includes built-in support for various popular large language models. Memory can utilize the LLM provided by the user, ensuring efficient use for specific needs.
<CardGroup cols={4}>
<Card title="OpenAI" href="#openai"></Card>
<Card title="Ollama" href="#ollama"></Card>
<Card title="Groq" href="#groq"></Card>
<Card title="Together" href="#together"></Card>
<Card title="AWS Bedrock" href="#aws-bedrock"></Card>
<Card title="Litellm" href="#litellm"></Card>
<Card title="Google AI" href="#google-ai"></Card>
<Card title="Anthropic" href="#anthropic"></Card>
<Card title="Mistral AI" href="#mistral-ai"></Card>
<Card title="Azure OpenAI" href="#azure-openai"></Card>
</CardGroup>
## OpenAI
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
Once you have obtained the key, you can use it like this:
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
# Use Openrouter by passing it's api key
# os.environ["OPENROUTER_API_KEY"] = "your-api-key"
# config = {
# "llm": {
# "provider": "openai",
# "config": {
# "model": "meta-llama/llama-3.1-70b-instruct",
# }
# }
# }
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Ollama
You can use LLMs from Ollama to run Mem0 locally. These [models](https://ollama.com/search?c=tools) support tool support.
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # for embedder
config = {
"llm": {
"provider": "ollama",
"config": {
"model": "mixtral:8x7b",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Groq
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key. Set the API key as `GROQ_API_KEY` environment variable to use the model as given below in the example.
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["GROQ_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "groq",
"config": {
"model": "mixtral-8x7b-32768",
"temperature": 0.1,
"max_tokens": 1000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Together
To use TogetherAI LLM models, you have to set the `TOGETHER_API_KEY` environment variable. You can obtain the TogetherAI API key from their [Account settings page](https://api.together.xyz/settings/api-keys).
Once you have obtained the key, you can use it like this:
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["TOGETHER_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "togetherai",
"config": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## AWS Bedrock
### Setup
- Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess).
- You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials)
- You will have to export `AWS_REGION`, `AWS_ACCESS_KEY`, and `AWS_SECRET_ACCESS_KEY` to set environment variables.
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ['AWS_REGION'] = 'us-east-1'
os.environ["AWS_ACCESS_KEY"] = "xx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xx"
config = {
"llm": {
"provider": "aws_bedrock",
"config": {
"model": "arn:aws:bedrock:us-east-1:123456789012:model/your-model-name",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Litellm
[Litellm](https://litellm.vercel.app/docs/) is compatible with over 100 large language models (LLMs), all using a standardized input/output format. You can explore the [available models]((https://litellm.vercel.app/docs/providers)) to use with Litellm. Ensure you set the `API_KEY` for the model you choose to use.
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Google AI
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
Once you have obtained the key, you can use it like this:
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["GEMINI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "gemini/gemini-pro",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Anthropic
To use anthropic's models, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "claude-3-opus-20240229",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Mistral AI
To use mistral's models, please Obtain the Mistral AI api key from their [console](https://console.mistral.ai/). Set the `MISTRAL_API_KEY` environment variable to use the model as given below in the example.
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["MISTRAL_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "open-mixtral-8x7b",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Azure OpenAI
To use Azure OpenAI models, you have to set the `AZURE_OPENAI_API_KEY`, `AZURE_OPENAI_ENDPOINT`, and `OPENAI_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
```python
import os
from mem0 import Memory
os.environ["AZURE_OPENAI_API_KEY"] = "your-api-key"
os.environ["AZURE_OPENAI_ENDPOINT"] = "your-api-base-url"
os.environ["OPENAI_API_VERSION"] = "version-to-use"
config = {
"llm": {
"provider": "azure_openai",
"config": {
"model": "your-deployment-name",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```

View File

@@ -0,0 +1,66 @@
## What is Config?
Config in mem0 is a dictionary that specifies the settings for your llms. It allows you to customize the behavior and connection details of your chosen llm.
## How to Define Config
The config is defined as a Python dictionary with two main keys:
- `llm`: Specifies the llm provider and its configuration
- `provider`: The name of the llm (e.g., "openai", "groq")
- `config`: A nested dictionary containing provider-specific settings
## How to Use Config
Here's a general example of how to use the config with mem0:
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx" # for embedder
config = {
"llm": {
"provider": "your_chosen_provider",
"config": {
# Provider-specific settings go here
}
}
}
m = Memory.from_config(config)
m.add("Your text here", user_id="user", metadata={"category": "example"})
```
## Why is Config Needed?
Config is essential for:
1. Specifying which llm to use.
2. Providing necessary connection details (e.g., model, api_key, temperature).
3. Ensuring proper initialization and connection to your chosen llm.
## Master List of All Params in Config
Here's a comprehensive list of all parameters that can be used across different llms:
Here's the table based on the provided parameters:
| Parameter | Description | Provider |
|----------------------|-----------------------------------------------|-------------------|
| `model` | Embedding model to use | All |
| `temperature` | Temperature of the model | All |
| `api_key` | API key to use | All |
| `max_tokens` | Tokens to generate | All |
| `top_p` | Probability threshold for nucleus sampling | All |
| `top_k` | Number of highest probability tokens to keep | All |
| `models` | List of models | Openrouter |
| `route` | Routing strategy | Openrouter |
| `openrouter_base_url`| Base URL for Openrouter API | Openrouter |
| `site_url` | Site URL | Openrouter |
| `app_name` | Application name | Openrouter |
| `ollama_base_url` | Base URL for Ollama API | Ollama |
## Supported LLMs
For detailed information on configuring specific llms, please visit the [LLMs](./models) section. There you'll find information for each supported llm with provider-specific usage examples and configuration details.

View File

@@ -0,0 +1,29 @@
To use anthropic's models, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "claude-3-opus-20240229",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `anthropic` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,34 @@
### Setup
- Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess).
- You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials)
- You will have to export `AWS_REGION`, `AWS_ACCESS_KEY`, and `AWS_SECRET_ACCESS_KEY` to set environment variables.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ['AWS_REGION'] = 'us-east-1'
os.environ["AWS_ACCESS_KEY"] = "xx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xx"
config = {
"llm": {
"provider": "aws_bedrock",
"config": {
"model": "arn:aws:bedrock:us-east-1:123456789012:model/your-model-name",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
All available parameters for the `aws_bedrock` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,30 @@
To use Azure OpenAI models, you have to set the `AZURE_OPENAI_API_KEY`, `AZURE_OPENAI_ENDPOINT`, and `OPENAI_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
## Usage
```python
import os
from mem0 import Memory
os.environ["AZURE_OPENAI_API_KEY"] = "your-api-key"
os.environ["AZURE_OPENAI_ENDPOINT"] = "your-api-base-url"
os.environ["OPENAI_API_VERSION"] = "version-to-use"
config = {
"llm": {
"provider": "azure_openai",
"config": {
"model": "your-deployment-name",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `azure_openai` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,29 @@
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["GEMINI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "gemini/gemini-pro",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `litellm` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,31 @@
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key. Set the API key as `GROQ_API_KEY` environment variable to use the model as given below in the example.
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["GROQ_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "groq",
"config": {
"model": "mixtral-8x7b-32768",
"temperature": 0.1,
"max_tokens": 1000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `groq` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,28 @@
[Litellm](https://litellm.vercel.app/docs/) is compatible with over 100 large language models (LLMs), all using a standardized input/output format. You can explore the [available models]((https://litellm.vercel.app/docs/providers)) to use with Litellm. Ensure you set the `API_KEY` for the model you choose to use.
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `litellm` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,29 @@
To use mistral's models, please Obtain the Mistral AI api key from their [console](https://console.mistral.ai/). Set the `MISTRAL_API_KEY` environment variable to use the model as given below in the example.
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["MISTRAL_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "open-mixtral-8x7b",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `litellm` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,28 @@
You can use LLMs from Ollama to run Mem0 locally. These [models](https://ollama.com/search?c=tools) support tool support.
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # for embedder
config = {
"llm": {
"provider": "ollama",
"config": {
"model": "mixtral:8x7b",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `ollama` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,39 @@
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
# Use Openrouter by passing it's api key
# os.environ["OPENROUTER_API_KEY"] = "your-api-key"
# config = {
# "llm": {
# "provider": "openai",
# "config": {
# "model": "meta-llama/llama-3.1-70b-instruct",
# }
# }
# }
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `openai` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,29 @@
To use TogetherAI LLM models, you have to set the `TOGETHER_API_KEY` environment variable. You can obtain the TogetherAI API key from their [Account settings page](https://api.together.xyz/settings/api-keys).
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["TOGETHER_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "togetherai",
"config": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Config
All available parameters for the `togetherai` config are present in [Master List of All Params in Config](../config).

View File

@@ -0,0 +1,13 @@
---
title: Overview
---
Mem0 includes built-in support for various popular large language models. Memory can utilize the LLM provided by the user, ensuring efficient use for specific needs.
## Usage
To use a llm, you must provide a configuration to customize its usage. If no configuration is supplied, a default configuration will be applied, and `OpenAI` will be used as the llm.
For a comprehensive list of available parameters for llm configuration, please refer to [Config](./config).
To view all supported llms, visit the [Supported LLMs](./models).

View File

@@ -63,7 +63,25 @@
"open-source/quickstart",
{
"group": "LLMs",
"pages": ["components/llms"]
"pages": [
"components/llms/overview",
"components/llms/config",
{
"group": "Supported LLMs",
"pages": [
"components/llms/models/openai",
"components/llms/models/anthropic",
"components/llms/models/azure_openai",
"components/llms/models/ollama",
"components/llms/models/together",
"components/llms/models/groq",
"components/llms/models/litellm",
"components/llms/models/mistral_AI",
"components/llms/models/google_AI",
"components/llms/models/aws_bedrock"
]
}
]
},
{
"group": "Vector Databases",