diff --git a/embedchain/embedchain.py b/embedchain/embedchain.py index 153b64d9..47fd2aa4 100644 --- a/embedchain/embedchain.py +++ b/embedchain/embedchain.py @@ -565,7 +565,7 @@ class EmbedChain(JSONSerializable): dry_run=False, where: Optional[Dict[str, str]] = None, **kwargs: Dict[str, Any], - ) -> str: + ) -> Union[Tuple[str, List[Tuple[str, str, str]]], str]: """ Queries the vector database on the given input query. Gets relevant doc based on the query and then passes it to an @@ -590,13 +590,10 @@ class EmbedChain(JSONSerializable): or the dry run result :rtype: str, if citations is False, otherwise Tuple[str,List[Tuple[str,str,str]]] """ - if "citations" in kwargs: - citations = kwargs.pop("citations") - else: - citations = False - + citations = kwargs.get("citations", False) + db_kwargs = {key: value for key, value in kwargs.items() if key != "citations"} contexts = self._retrieve_from_database( - input_query=input_query, config=config, where=where, citations=citations, **kwargs + input_query=input_query, config=config, where=where, citations=citations, **db_kwargs ) if citations and len(contexts) > 0 and isinstance(contexts[0], tuple): contexts_data_for_llm_query = list(map(lambda x: x[0], contexts)) diff --git a/pyproject.toml b/pyproject.toml index dd6e3b21..f5d998ff 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "embedchain" -version = "0.1.27" +version = "0.1.28" description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data" authors = [ "Taranjeet Singh ",