Add LM Studio support (#2425)

This commit is contained in:
Dev Khant
2025-03-24 13:32:26 +05:30
committed by GitHub
parent e4307ae420
commit e77a10a8da
15 changed files with 298 additions and 1 deletions

View File

@@ -84,6 +84,7 @@ Here's a comprehensive list of all parameters that can be used across different
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | VertexAI |
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | VertexAI |
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | VertexAI |
| `lmstudio_base_url` | Base URL for LM Studio API | LM Studio |
</Tab>
<Tab title="TypeScript">
| Parameter | Description | Provider |

View File

@@ -0,0 +1,38 @@
You can use embedding models from LM Studio to run Mem0 locally.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM
config = {
"embedder": {
"provider": "lmstudio",
"config": {
"model": "nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf"
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Im not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="john")
```
### Config
Here are the parameters available for configuring Ollama embedder:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `model` | The name of the OpenAI model to use | `nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf` |
| `embedding_dims` | Dimensions of the embedding model | `1536` |
| `lmstudio_base_url` | Base URL for LM Studio connection | `http://localhost:1234/v1` |

View File

@@ -22,6 +22,7 @@ See the list of supported embedders below.
<Card title="Gemini" href="/components/embedders/models/gemini"></Card>
<Card title="Vertex AI" href="/components/embedders/models/vertexai"></Card>
<Card title="Together" href="/components/embedders/models/together"></Card>
<Card title="LM Studio" href="/components/embedders/models/lmstudio"></Card>
</CardGroup>
## Usage

View File

@@ -108,6 +108,7 @@ Here's a comprehensive list of all parameters that can be used across different
| `azure_kwargs` | Azure LLM args for initialization | AzureOpenAI |
| `deepseek_base_url` | Base URL for DeepSeek API | DeepSeek |
| `xai_base_url` | Base URL for XAI API | XAI |
| `lmstudio_base_url` | Base URL for LM Studio API | LM Studio |
</Tab>
<Tab title="TypeScript">
| Parameter | Description | Provider |

View File

@@ -0,0 +1,82 @@
---
title: LM Studio
---
To use LM Studio with Mem0, you'll need to have LM Studio running locally with its server enabled. LM Studio provides a way to run local LLMs with an OpenAI-compatible API.
## Usage
<CodeGroup>
```python Python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
config = {
"llm": {
"provider": "lmstudio",
"config": {
"model": "lmstudio-community/Meta-Llama-3.1-70B-Instruct-GGUF/Meta-Llama-3.1-70B-Instruct-IQ2_M.gguf",
"temperature": 0.2,
"max_tokens": 2000,
"lmstudio_base_url": "http://localhost:1234/v1", # default LM Studio API URL
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
```
</CodeGroup>
### Running Completely Locally
You can also use LM Studio for both LLM and embedding to run Mem0 entirely locally:
```python
from mem0 import Memory
# No external API keys needed!
config = {
"llm": {
"provider": "lmstudio"
},
"embedder": {
"provider": "lmstudio"
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice123", metadata={"category": "movies"})
```
<Note>
When using LM Studio for both LLM and embedding, make sure you have:
1. An LLM model loaded for generating responses
2. An embedding model loaded for vector embeddings
3. The server enabled with the correct endpoints accessible
</Note>
<Note>
To use LM Studio, you need to:
1. Download and install [LM Studio](https://lmstudio.ai/)
2. Start a local server from the "Server" tab
3. Set the appropriate `lmstudio_base_url` in your configuration (default is usually http://localhost:1234/v1)
</Note>
## Config
All available parameters for the `lmstudio` config are present in [Master List of All Params in Config](../config).

View File

@@ -32,6 +32,7 @@ To view all supported llms, visit the [Supported LLMs](./models).
<Card title="Gemini" href="/components/llms/models/gemini" />
<Card title="DeepSeek" href="/components/llms/models/deepseek" />
<Card title="xAI" href="/components/llms/models/xAI" />
<Card title="LM Studio" href="/components/llms/models/lmstudio" />
</CardGroup>
## Structured vs Unstructured Outputs