Fix: Gemini Embeddings and LLM (#3050)

This commit is contained in:
Dev Khant
2025-06-26 21:05:00 +05:30
committed by GitHub
parent acf7a30d32
commit e3e2da6d45
2 changed files with 99 additions and 74 deletions

View File

@@ -1,7 +1,8 @@
import os
from typing import Literal, Optional
import google.genai as genai
from google import genai
from google.genai import types
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -16,24 +17,23 @@ class GoogleGenAIEmbedding(EmbeddingBase):
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
if api_key:
self.client = genai.Client(api_key="api_key")
else:
self.client = genai.Client()
self.client = genai.Client(api_key=api_key)
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. (Currently not used by Gemini for task_type)
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
text = text.replace("\n", " ")
response = self.client.models.embed_content(
model=self.config.model, content=text, output_dimensionality=self.config.embedding_dims
)
# Create config for embedding parameters
config = types.EmbedContentConfig(output_dimensionality=self.config.embedding_dims)
return response["embedding"]
# Call the embed_content method with the correct parameters
response = self.client.models.embed_content(model=self.config.model, contents=text, config=config)
return response.embeddings[0].values

View File

@@ -4,11 +4,8 @@ from typing import Dict, List, Optional
try:
from google import genai
from google.genai import types
except ImportError:
raise ImportError(
"The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'."
)
raise ImportError("The 'google-genai' library is required. Please install it using 'pip install google-genai'.")
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
@@ -19,70 +16,79 @@ class GeminiLLM(LLMBase):
super().__init__(config)
if not self.config.model:
self.config.model = "gemini-1.5-flash-latest"
self.config.model = "gemini-2.0-flash"
api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
self.client_gemini = genai.Client(
api_key=api_key,
)
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
self.client = genai.Client(api_key=api_key)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from the API.
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
candidate = response.candidates[0]
content = candidate.content.parts[0].text if candidate.content.parts else None
if tools:
processed_response = {
"content": content,
"content": None,
"tool_calls": [],
}
for part in candidate.content.parts:
fn = getattr(part, "function_call", None)
if fn:
# Extract content from the first candidate
if response.candidates and response.candidates[0].content.parts:
for part in response.candidates[0].content.parts:
if hasattr(part, "text") and part.text:
processed_response["content"] = part.text
break
# Extract function calls
if response.candidates and response.candidates[0].content.parts:
for part in response.candidates[0].content.parts:
if hasattr(part, "function_call") and part.function_call:
fn = part.function_call
processed_response["tool_calls"].append(
{
"name": fn.name,
"arguments": fn.args,
"arguments": dict(fn.args) if fn.args else {},
}
)
return processed_response
else:
if response.candidates and response.candidates[0].content.parts:
for part in response.candidates[0].content.parts:
if hasattr(part, "text") and part.text:
return part.text
return ""
return content
def _reformat_messages(self, messages: List[Dict[str, str]]) -> List[types.Content]:
def _reformat_messages(self, messages: List[Dict[str, str]]):
"""
Reformat messages for Gemini using google.genai.types.
Reformat messages for Gemini.
Args:
messages: The list of messages provided in the request.
Returns:
list: A list of types.Content objects with proper role and parts.
tuple: (system_instruction, contents_list)
"""
new_messages = []
system_instruction = None
contents = []
for message in messages:
if message["role"] == "system":
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
system_instruction = message["content"]
else:
content = message["content"]
new_messages.append(
types.Content(role="model" if message["role"] == "model" else "user", parts=[types.Part(text=content)])
content = types.Content(
parts=[types.Part(text=message["content"])],
role=message["role"],
)
contents.append(content)
return new_messages
return system_instruction, contents
def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
@@ -97,7 +103,6 @@ class GeminiLLM(LLMBase):
def remove_additional_properties(data):
"""Recursively removes 'additionalProperties' from nested dictionaries."""
if isinstance(data, dict):
filtered_dict = {
key: remove_additional_properties(value)
@@ -108,16 +113,21 @@ class GeminiLLM(LLMBase):
else:
return data
new_tools = []
if tools:
function_declarations = []
for tool in tools:
func = tool["function"].copy()
new_tools.append({"function_declarations": [remove_additional_properties(func)]})
cleaned_func = remove_additional_properties(func)
# TODO: temporarily ignore it to pass tests, will come back to update according to standards later.
# return content_types.to_function_library(new_tools)
function_declaration = types.FunctionDeclaration(
name=cleaned_func["name"],
description=cleaned_func.get("description", ""),
parameters=cleaned_func.get("parameters", {}),
)
function_declarations.append(function_declaration)
return new_tools
tool_obj = types.Tool(function_declarations=function_declarations)
return [tool_obj]
else:
return None
@@ -141,38 +151,53 @@ class GeminiLLM(LLMBase):
str: The generated response.
"""
params = {
# Extract system instruction and reformat messages
system_instruction, contents = self._reformat_messages(messages)
# Prepare generation config
config_params = {
"temperature": self.config.temperature,
"max_output_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format is not None and response_format["type"] == "json_object":
params["response_mime_type"] = "application/json"
if "schema" in response_format:
params["response_schema"] = response_format["schema"]
# Add system instruction to config if present
if system_instruction:
config_params["system_instruction"] = system_instruction
if response_format is not None and response_format["type"] == "json_object":
config_params["response_mime_type"] = "application/json"
if "schema" in response_format:
config_params["response_schema"] = response_format["schema"]
if tools:
formatted_tools = self._reformat_tools(tools)
config_params["tools"] = formatted_tools
tool_config = None
if tool_choice:
if tool_choice == "auto":
mode = types.FunctionCallingConfigMode.AUTO
elif tool_choice == "any":
mode = types.FunctionCallingConfigMode.ANY
else:
mode = types.FunctionCallingConfigMode.NONE
tool_config = types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(
mode=tool_choice.upper(), # Assuming 'any' should become 'ANY', etc.
allowed_function_names=[tool["function"]["name"] for tool in tools]
if tool_choice == "any"
else None,
)
)
response = self.client_gemini.models.generate_content(
model=self.config.model,
contents=self._reformat_messages(messages),
config=types.GenerateContentConfig(
temperature=self.config.temperature,
max_output_tokens=self.config.max_tokens,
top_p=self.config.top_p,
tools=self._reformat_tools(tools),
tool_config=tool_config,
mode=mode,
allowed_function_names=(
[tool["function"]["name"] for tool in tools] if tool_choice == "any" else None
),
)
)
config_params["tool_config"] = tool_config
generation_config = types.GenerateContentConfig(**config_params)
response = self.client.models.generate_content(
model=self.config.model, contents=contents, config=generation_config
)
return self._parse_response(response, tools)