diff --git a/cookbooks/add_memory_using_qdrant_cloud.py b/cookbooks/add_memory_using_qdrant_cloud.py new file mode 100644 index 00000000..c2500ff8 --- /dev/null +++ b/cookbooks/add_memory_using_qdrant_cloud.py @@ -0,0 +1,40 @@ +# This example shows how to use vector config to use QDRANT CLOUD +import os +from dotenv import load_dotenv +from mem0 import Memory + +# Loading OpenAI API Key +load_dotenv() +OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') +USER_ID = "test" +quadrant_host="xx.gcp.cloud.qdrant.io" + +# creating the config attributes +collection_name="memory" # this is the collection I created in QDRANT cloud +api_key=os.environ.get("QDRANT_API_KEY") # Getting the QDRANT api KEY +host=quadrant_host +port=6333 #Default port for QDRANT cloud + +# Creating the config dict +config = { + "vector_store": { + "provider": "qdrant", + "config": { + "collection_name": collection_name, + "host": host, + "port": port, + "path": None, + "api_key":api_key + } + } +} + +# this is the change, create the memory class using from config +memory = Memory().from_config(config) + +USER_DATA = """ +I am a strong believer in memory architecture. +""" + +response = memory.add(USER_DATA, user_id=USER_ID) +print(response) diff --git a/mem0/memory/main.py b/mem0/memory/main.py index 142f6b7a..18af3894 100644 --- a/mem0/memory/main.py +++ b/mem0/memory/main.py @@ -32,7 +32,7 @@ class Memory(MemoryBase): self.vector_store = VectorStoreFactory.create(self.config.vector_store.provider, self.config.vector_store.config) self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config) self.db = SQLiteManager(self.config.history_db_path) - self.collection_name = self.config.vector_store.config.collection_name if "collection_name" in self.config.vector_store.config else "mem0" + self.collection_name = self.config.vector_store.config.collection_name capture_event("mem0.init", self)