[Feature] Add support for RAG evaluation (#1154)

Co-authored-by: Deven Patel <deven298@yahoo.com>
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Deven Patel
2024-01-11 20:02:47 +05:30
committed by GitHub
parent 69e83adae0
commit e2cca61cd3
18 changed files with 788 additions and 21 deletions

View File

@@ -0,0 +1,41 @@
---
title: '📝 evaluate'
---
`evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below:
### Parameters
<ParamField path="question" type="Union[str, list[str]]">
A question or a list of questions to evaluate your app on.
</ParamField>
<ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional>
The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]`
</ParamField>
<ParamField path="num_workers" type="int" optional>
Specify the number of threads to use for parallel processing.
</ParamField>
### Returns
<ResponseField name="metrics" type="dict">
Returns the metrics you have chosen to evaluate your app on as a dictionary.
</ResponseField>
## Usage
```python
from embedchain import App
app = App()
# add data source
app.add("https://www.forbes.com/profile/elon-musk")
# run evaluation
app.evaluate("what is the net worth of Elon Musk?")
# {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613}
# or
# app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"])
```

View File

@@ -0,0 +1,208 @@
---
title: 🔬 Evaluation
---
## Overview
We provide out-of-the-box evaluation methods for your datasets. You can use them to evaluate your models and compare them with other models.
Currently, we provide the following evaluation methods:
<CardGroup cols={3}>
<Card title="Context Relevancy" href="#context_relevancy"></Card>
<Card title="Answer Relevancy" href="#answer_relevancy"></Card>
<Card title="Groundedness" href="#groundedness"></Card>
<Card title="Custom" href="#custom"></Card>
</CardGroup>
More evaluation metrics are coming soon! 🏗️
## Usage
We have found that the best way to evaluate datasets is with the help of OpenAI's `gpt-4` model. Hence, we require you to set `OPENAI_API_KEY` as an environment variable. If you don't want to set it, you can pass it in the config argument of the respective evaluation class, as shown in the examples later below.
<Accordion title="We will assume the following dataset for the examples below">
<CodeGroup>
```python main.py
from embedchain.utils.eval import EvalData
data = [
{
"question": "What is the net worth of Elon Musk?",
"contexts": [
"""Elon Musk PROFILEElon MuskCEO, ...""",
"""a Twitter poll on whether the journalists' ...""",
"""2016 and run by Jared Birchall.[335]...""",
],
"answer": "As of the information provided, Elon Musk's net worth is $241.6 billion.",
},
{
"question": "which companies does Elon Musk own?",
"contexts": [
"""of December 2023[update], ...""",
"""ThielCofounderView ProfileTeslaHolds ...""",
"""Elon Musk PROFILEElon MuskCEO, ...""",
],
"answer": "Elon Musk owns several companies, including Tesla, SpaceX, Neuralink, and The Boring Company.",
},
]
dataset = []
for d in data:
dataset.append(EvalData(question=d["question"], contexts=d["contexts"], answer=d["answer"]))
```
</CodeGroup>
</Accordion>
## Context Relevancy <a id="context_relevancy"></a>
Context relevancy is a metric to determine how relevant the context is to the question. We use OpenAI's `gpt-4` model to determine the relevancy of the context.
We achieve this by prompting the model with the question and the context and asking it to return relevant sentences from the context. We then use the following formula to determine the score:
context_relevance_score = (# of relevant sentences in context) $$\div$$ (total # of sentences in context)
You can run the context relevancy evaluation with the following simple code:
```python
from embedchain.eval.metrics import ContextRelevance
metric = ContextRelevance()
score = metric.evaluate(dataset) # dataset from above
print(score)
# 0.27975528364849833
```
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `ContextRelevanceConfig` class.
### ContextRelevanceConfig
<ParamField path="model" type="str" optional>
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
</ParamField>
<ParamField path="api_key" type="str" optional>
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
</ParamField>
<ParamField path="language" type="str" optional>
The language of the dataset being evaluated. We need this to determine the understand the context provided in the dataset. Defaults to `en`.
</ParamField>
<ParamField path="prompt" type="str" optional>
The prompt to extract the relevant sentences from the context. Defaults to `CONTEXT_RELEVANCY_PROMPT`, which can be found at `embedchain.config.eval.base` path.
</ParamField>
```python
openai_api_key = "sk-xxx"
metric = ContextRelevance(config=ContextRelevanceConfig(model='gpt-4', api_key=openai_api_key, language="en"))
print(metric.evaluate(dataset))
```
## Answer Relevancy <a id="answer_relevancy"></a>
Answer relevancy is a metric to determine how relevant the answer is to the question. We use OpenAI's `gpt-4` model to determine the relevancy of the answer.
We achieve this by prompting the model with the answer and asking it to generate questions from the answer. We then use the cosine similarity between the generated questions and the original question to determine the score.
answer_relevancy_score = mean(cosine_similarity(generated_questions, original_question))
You can run the answer relevancy evaluation with the following simple code:
```python
from embedchain.eval.metrics import AnswerRelevance
metric = AnswerRelevance()
score = metric.evaluate(dataset) # dataset from above
print(score)
# 0.9505334177461916
```
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `AnswerRelevanceConfig` class.
### AnswerRelevanceConfig
<ParamField path="model" type="str" optional>
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
</ParamField>
<ParamField path="embedder" type="str" optional>
The embedder to use for embedding the text. Defaults to `text-embedding-ada-002`. We only support openai's embedders for now.
</ParamField>
<ParamField path="api_key" type="str" optional>
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
</ParamField>
<ParamField path="num_gen_questions" type="int" optional>
The number of questions to generate for each answer. We use the generated questions to compare the similarity with the original question to determine the score. Defaults to `1`.
</ParamField>
<ParamField path="prompt" type="str" optional>
The prompt to extract the `num_gen_questions` number of questions from the provided answer. Defaults to `ANSWER_RELEVANCY_PROMPT`, which can be found at `embedchain.config.eval.base` path.
</ParamField>
```python
openai_api_key = "sk-xxx"
metric = AnswerRelevance(config=AnswerRelevanceConfig(model='gpt-4',
embedder="text-embedding-ada-002",
api_key=openai_api_key,
num_gen_questions=2))
print(metric.evaluate(dataset))
```
## Groundedness <a id="groundedness"></a>
Groundedness is a metric to determine how grounded the answer is to the context. We use OpenAI's `gpt-4` model to determine the groundedness of the answer.
We achieve this by prompting the model with the answer and asking it to generate claims from the answer. We then again prompt the model with the context and the generated claims to determine the verdict on the claims. We then use the following formula to determine the score:
groundedness_score = (sum of all verdicts) $$\div$$ (total # of claims)
You can run the groundedness evaluation with the following simple code:
```python
from embedchain.eval.metrics import Groundedness
metric = Groundedness()
score = metric.evaluate(dataset) # dataset from above
print(score)
# 1.0
```
In the above example, we used sensible defaults for the evaluation. However, you can also configure the evaluation metric as per your needs using the `GroundednessConfig` class.
### GroundednessConfig
<ParamField path="model" type="str" optional>
The model to use for the evaluation. Defaults to `gpt-4`. We only support openai's models for now.
</ParamField>
<ParamField path="api_key" type="str" optional>
The openai api key to use for the evaluation. Defaults to `None`. If not provided, we will use the `OPENAI_API_KEY` environment variable.
</ParamField>
<ParamField path="answer_claims_prompt" type="str" optional>
The prompt to extract the claims from the provided answer. Defaults to `GROUNDEDNESS_ANSWER_CLAIMS_PROMPT`, which can be found at `embedchain.config.eval.base` path.
</ParamField>
<ParamField path="claims_inference_prompt" type="str" optional>
The prompt to get verdicts on the claims from the answer from the given context. Defaults to `GROUNDEDNESS_CLAIMS_INFERENCE_PROMPT`, which can be found at `embedchain.config.eval.base` path.
</ParamField>
```python
openai_api_key = "sk-xxx"
metric = Groundedness(config=GroundednessConfig(model='gpt-4',
api_key=openai_api_key))
print(metric.evaluate(dataset))
```
## Custom <a id="custom"></a>
You can also create your own evaluation metric by extending the `BaseMetric` class. You can find the source code for the existing metrics at `embedchain.eval.metrics` path.
<Note>
You must provide the `name` of your custom metric in the `__init__` method of your class. This name will be used to identify your metric in the evaluation report.
</Note>
```python
from embedchain.eval.metrics import BaseMetric
from embedchain.utils.eval import EvalData
from embedchain.config.base_config import BaseConfig
from typing import Optional
class CustomMetric(BaseMetric):
def __init__(self, config: Optional[BaseConfig] = None):
super().__init__(name="custom_metric")
def evaluate(self, dataset: list[EvalData]):
score = 0.0
# write your evaluation logic here
return score
```

View File

@@ -131,7 +131,8 @@
}, },
"components/llms", "components/llms",
"components/vector-databases", "components/vector-databases",
"components/embedding-models" "components/embedding-models",
"components/evaluation"
] ]
}, },
{ {
@@ -208,7 +209,8 @@
"api-reference/pipeline/search", "api-reference/pipeline/search",
"api-reference/pipeline/deploy", "api-reference/pipeline/deploy",
"api-reference/pipeline/reset", "api-reference/pipeline/reset",
"api-reference/pipeline/delete" "api-reference/pipeline/delete",
"api-reference/pipeline/evaluate"
] ]
}, },
"api-reference/store/openai-assistant", "api-reference/store/openai-assistant",

View File

@@ -1,13 +1,15 @@
import ast import ast
import concurrent.futures
import json import json
import logging import logging
import os import os
import sqlite3 import sqlite3
import uuid import uuid
from typing import Any, Optional from typing import Any, Optional, Union
import requests import requests
import yaml import yaml
from tqdm import tqdm
from embedchain.cache import (Config, ExactMatchEvaluation, from embedchain.cache import (Config, ExactMatchEvaluation,
SearchDistanceEvaluation, cache, SearchDistanceEvaluation, cache,
@@ -18,11 +20,15 @@ from embedchain.constants import SQLITE_PATH
from embedchain.embedchain import EmbedChain from embedchain.embedchain import EmbedChain
from embedchain.embedder.base import BaseEmbedder from embedchain.embedder.base import BaseEmbedder
from embedchain.embedder.openai import OpenAIEmbedder from embedchain.embedder.openai import OpenAIEmbedder
from embedchain.eval.base import BaseMetric
from embedchain.eval.metrics import (AnswerRelevance, ContextRelevance,
Groundedness)
from embedchain.factory import EmbedderFactory, LlmFactory, VectorDBFactory from embedchain.factory import EmbedderFactory, LlmFactory, VectorDBFactory
from embedchain.helpers.json_serializable import register_deserializable from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm from embedchain.llm.base import BaseLlm
from embedchain.llm.openai import OpenAILlm from embedchain.llm.openai import OpenAILlm
from embedchain.telemetry.posthog import AnonymousTelemetry from embedchain.telemetry.posthog import AnonymousTelemetry
from embedchain.utils.eval import EvalData, EvalMetric
from embedchain.utils.misc import validate_config from embedchain.utils.misc import validate_config
from embedchain.vectordb.base import BaseVectorDB from embedchain.vectordb.base import BaseVectorDB
from embedchain.vectordb.chroma import ChromaDB from embedchain.vectordb.chroma import ChromaDB
@@ -455,3 +461,103 @@ class App(EmbedChain):
chunker=chunker_config_data, chunker=chunker_config_data,
cache_config=cache_config, cache_config=cache_config,
) )
def _eval(self, dataset: list[EvalData], metric: Union[BaseMetric, str]):
"""
Evaluate the app on a dataset for a given metric.
"""
metric_str = metric.name if isinstance(metric, BaseMetric) else metric
eval_class_map = {
EvalMetric.CONTEXT_RELEVANCY.value: ContextRelevance,
EvalMetric.ANSWER_RELEVANCY.value: AnswerRelevance,
EvalMetric.GROUNDEDNESS.value: Groundedness,
}
if metric_str in eval_class_map:
return eval_class_map[metric_str]().evaluate(dataset)
# Handle the case for custom metrics
if isinstance(metric, BaseMetric):
return metric.evaluate(dataset)
else:
raise ValueError(f"Invalid metric: {metric}")
def evaluate(
self,
questions: Union[str, list[str]],
metrics: Optional[list[Union[BaseMetric, str]]] = None,
num_workers: int = 4,
):
"""
Evaluate the app on a question.
param: questions: A question or a list of questions to evaluate.
type: questions: Union[str, list[str]]
param: metrics: A list of metrics to evaluate. Defaults to all metrics.
type: metrics: Optional[list[Union[BaseMetric, str]]]
param: num_workers: Number of workers to use for parallel processing.
type: num_workers: int
return: A dictionary containing the evaluation results.
rtype: dict
"""
if "OPENAI_API_KEY" not in os.environ:
raise ValueError("Please set the OPENAI_API_KEY environment variable with permission to use `gpt4` model.")
queries, answers, contexts = [], [], []
if isinstance(questions, list):
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_data = {executor.submit(self.query, q, citations=True): q for q in questions}
for future in tqdm(
concurrent.futures.as_completed(future_to_data),
total=len(future_to_data),
desc="Getting answer and contexts for questions",
):
question = future_to_data[future]
queries.append(question)
answer, context = future.result()
answers.append(answer)
contexts.append(list(map(lambda x: x[0], context)))
else:
answer, context = self.query(questions, citations=True)
queries = [questions]
answers = [answer]
contexts = [list(map(lambda x: x[0], context))]
metrics = metrics or [
EvalMetric.CONTEXT_RELEVANCY.value,
EvalMetric.ANSWER_RELEVANCY.value,
EvalMetric.GROUNDEDNESS.value,
]
logging.info(f"Collecting data from {len(queries)} questions for evaluation...")
dataset = []
for q, a, c in zip(queries, answers, contexts):
dataset.append(EvalData(question=q, answer=a, contexts=c))
logging.info(f"Evaluating {len(dataset)} data points...")
result = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_metric = {executor.submit(self._eval, dataset, metric): metric for metric in metrics}
for future in tqdm(
concurrent.futures.as_completed(future_to_metric),
total=len(future_to_metric),
desc="Evaluating metrics",
):
metric = future_to_metric[future]
if isinstance(metric, BaseMetric):
result[metric.name] = future.result()
else:
result[metric] = future.result()
if self.config.collect_metrics:
telemetry_props = self._telemetry_props
metrics_names = []
for metric in metrics:
if isinstance(metric, BaseMetric):
metrics_names.append(metric.name)
else:
metrics_names.append(metric)
telemetry_props["metrics"] = metrics_names
self.telemetry.capture(event_name="evaluate", properties=telemetry_props)
return result

View File

@@ -0,0 +1,2 @@
from .base import (AnswerRelevanceConfig, ContextRelevanceConfig, # noqa: F401
GroundednessConfig)

View File

@@ -0,0 +1,92 @@
from typing import Optional
from embedchain.config.base_config import BaseConfig
ANSWER_RELEVANCY_PROMPT = """
Please provide $num_gen_questions questions from the provided answer.
You must provide the complete question, if are not able to provide the complete question, return empty string ("").
Please only provide one question per line without numbers or bullets to distinguish them.
You must only provide the questions and no other text.
$answer
""" # noqa:E501
CONTEXT_RELEVANCY_PROMPT = """
Please extract relevant sentences from the provided context that is required to answer the given question.
If no relevant sentences are found, or if you believe the question cannot be answered from the given context, return the empty string ("").
While extracting candidate sentences you're not allowed to make any changes to sentences from given context or make up any sentences.
You must only provide sentences from the given context and nothing else.
Context: $context
Question: $question
""" # noqa:E501
GROUNDEDNESS_ANSWER_CLAIMS_PROMPT = """
Please provide one or more statements from each sentence of the provided answer.
You must provide the symantically equivalent statements for each sentence of the answer.
You must provide the complete statement, if are not able to provide the complete statement, return empty string ("").
Please only provide one statement per line WITHOUT numbers or bullets.
If the question provided is not being answered in the provided answer, return empty string ("").
You must only provide the statements and no other text.
$question
$answer
""" # noqa:E501
GROUNDEDNESS_CLAIMS_INFERENCE_PROMPT = """
Given the context and the provided claim statements, please provide a verdict for each claim statement whether it can be completely infered from the given context or not.
Use only "1" (yes), "0" (no) and "-1" (null) for "yes", "no" or "null" respectively.
You must provide one verdict per line, ONLY WITH "1", "0" or "-1" as per your verdict to the given statement and nothing else.
You must provide the verdicts in the same order as the claim statements.
Contexts:
$context
Claim statements:
$claim_statements
""" # noqa:E501
class GroundednessConfig(BaseConfig):
def __init__(
self,
model: str = "gpt-4",
api_key: Optional[str] = None,
answer_claims_prompt: str = GROUNDEDNESS_ANSWER_CLAIMS_PROMPT,
claims_inference_prompt: str = GROUNDEDNESS_CLAIMS_INFERENCE_PROMPT,
):
self.model = model
self.api_key = api_key
self.answer_claims_prompt = answer_claims_prompt
self.claims_inference_prompt = claims_inference_prompt
class AnswerRelevanceConfig(BaseConfig):
def __init__(
self,
model: str = "gpt-4",
embedder: str = "text-embedding-ada-002",
api_key: Optional[str] = None,
num_gen_questions: int = 1,
prompt: str = ANSWER_RELEVANCY_PROMPT,
):
self.model = model
self.embedder = embedder
self.api_key = api_key
self.num_gen_questions = num_gen_questions
self.prompt = prompt
class ContextRelevanceConfig(BaseConfig):
def __init__(
self,
model: str = "gpt-4",
api_key: Optional[str] = None,
language: str = "en",
prompt: str = CONTEXT_RELEVANCY_PROMPT,
):
self.model = model
self.api_key = api_key
self.language = language
self.prompt = prompt

View File

@@ -7,12 +7,9 @@ from typing import Any, Optional, Union
from dotenv import load_dotenv from dotenv import load_dotenv
from langchain.docstore.document import Document from langchain.docstore.document import Document
from embedchain.cache import ( from embedchain.cache import (adapt, get_gptcache_session,
adapt, gptcache_data_convert,
get_gptcache_session, gptcache_update_cache_callback)
gptcache_data_convert,
gptcache_update_cache_callback,
)
from embedchain.chunkers.base_chunker import BaseChunker from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config import AddConfig, BaseLlmConfig, ChunkerConfig from embedchain.config import AddConfig, BaseLlmConfig, ChunkerConfig
from embedchain.config.base_app_config import BaseAppConfig from embedchain.config.base_app_config import BaseAppConfig
@@ -22,7 +19,8 @@ from embedchain.embedder.base import BaseEmbedder
from embedchain.helpers.json_serializable import JSONSerializable from embedchain.helpers.json_serializable import JSONSerializable
from embedchain.llm.base import BaseLlm from embedchain.llm.base import BaseLlm
from embedchain.loaders.base_loader import BaseLoader from embedchain.loaders.base_loader import BaseLoader
from embedchain.models.data_type import DataType, DirectDataType, IndirectDataType, SpecialDataType from embedchain.models.data_type import (DataType, DirectDataType,
IndirectDataType, SpecialDataType)
from embedchain.telemetry.posthog import AnonymousTelemetry from embedchain.telemetry.posthog import AnonymousTelemetry
from embedchain.utils.misc import detect_datatype, is_valid_json_string from embedchain.utils.misc import detect_datatype, is_valid_json_string
from embedchain.vectordb.base import BaseVectorDB from embedchain.vectordb.base import BaseVectorDB

View File

29
embedchain/eval/base.py Normal file
View File

@@ -0,0 +1,29 @@
from abc import ABC, abstractmethod
from embedchain.utils.eval import EvalData
class BaseMetric(ABC):
"""Base class for a metric.
This class provides a common interface for all metrics.
"""
def __init__(self, name: str = "base_metric"):
"""
Initialize the BaseMetric.
"""
self.name = name
@abstractmethod
def evaluate(self, dataset: list[EvalData]):
"""
Abstract method to evaluate the dataset.
This method should be implemented by subclasses to perform the actual
evaluation on the dataset.
:param dataset: dataset to evaluate
:type dataset: list[EvalData]
"""
raise NotImplementedError()

View File

@@ -0,0 +1,3 @@
from .answer_relevancy import AnswerRelevance # noqa: F401
from .context_relevancy import ContextRelevance # noqa: F401
from .groundedness import Groundedness # noqa: F401

View File

@@ -0,0 +1,93 @@
import concurrent.futures
import logging
import os
from string import Template
from typing import Optional
import numpy as np
from openai import OpenAI
from tqdm import tqdm
from embedchain.config.eval.base import AnswerRelevanceConfig
from embedchain.eval.base import BaseMetric
from embedchain.utils.eval import EvalData, EvalMetric
class AnswerRelevance(BaseMetric):
"""
Metric for evaluating the relevance of answers.
"""
def __init__(self, config: Optional[AnswerRelevanceConfig] = AnswerRelevanceConfig()):
super().__init__(name=EvalMetric.ANSWER_RELEVANCY.value)
self.config = config
api_key = self.config.api_key or os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("API key not found. Set 'OPENAI_API_KEY' or pass it in the config.")
self.client = OpenAI(api_key=api_key)
def _generate_prompt(self, data: EvalData) -> str:
"""
Generates a prompt based on the provided data.
"""
return Template(self.config.prompt).substitute(
num_gen_questions=self.config.num_gen_questions, answer=data.answer
)
def _generate_questions(self, prompt: str) -> list[str]:
"""
Generates questions from the prompt.
"""
response = self.client.chat.completions.create(
model=self.config.model,
messages=[{"role": "user", "content": prompt}],
)
return response.choices[0].message.content.strip().split("\n")
def _generate_embedding(self, question: str) -> np.ndarray:
"""
Generates the embedding for a question.
"""
response = self.client.embeddings.create(
input=question,
model=self.config.embedder,
)
return np.array(response.data[0].embedding)
def _compute_similarity(self, original: np.ndarray, generated: np.ndarray) -> float:
"""
Computes the cosine similarity between two embeddings.
"""
original = original.reshape(1, -1)
norm = np.linalg.norm(original) * np.linalg.norm(generated, axis=1)
return np.dot(generated, original.T).flatten() / norm
def _compute_score(self, data: EvalData) -> float:
"""
Computes the relevance score for a given data item.
"""
prompt = self._generate_prompt(data)
generated_questions = self._generate_questions(prompt)
original_embedding = self._generate_embedding(data.question)
generated_embeddings = np.array([self._generate_embedding(q) for q in generated_questions])
similarities = self._compute_similarity(original_embedding, generated_embeddings)
return np.mean(similarities)
def evaluate(self, dataset: list[EvalData]) -> float:
"""
Evaluates the dataset and returns the average answer relevance score.
"""
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_data = {executor.submit(self._compute_score, data): data for data in dataset}
for future in tqdm(
concurrent.futures.as_completed(future_to_data), total=len(dataset), desc="Evaluating Answer Relevancy"
):
data = future_to_data[future]
try:
results.append(future.result())
except Exception as e:
logging.error(f"Error evaluating answer relevancy for {data}: {e}")
return np.mean(results) if results else 0.0

View File

@@ -0,0 +1,69 @@
import concurrent.futures
import os
from string import Template
from typing import Optional
import numpy as np
import pysbd
from openai import OpenAI
from tqdm import tqdm
from embedchain.config.eval.base import ContextRelevanceConfig
from embedchain.eval.base import BaseMetric
from embedchain.utils.eval import EvalData, EvalMetric
class ContextRelevance(BaseMetric):
"""
Metric for evaluating the relevance of context in a dataset.
"""
def __init__(self, config: Optional[ContextRelevanceConfig] = ContextRelevanceConfig()):
super().__init__(name=EvalMetric.CONTEXT_RELEVANCY.value)
self.config = config
api_key = self.config.api_key or os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("API key not found. Set 'OPENAI_API_KEY' or pass it in the config.")
self.client = OpenAI(api_key=api_key)
self._sbd = pysbd.Segmenter(language=self.config.language, clean=False)
def _sentence_segmenter(self, text: str) -> list[str]:
"""
Segments the given text into sentences.
"""
return self._sbd.segment(text)
def _compute_score(self, data: EvalData) -> float:
"""
Computes the context relevance score for a given data item.
"""
original_context = "\n".join(data.contexts)
prompt = Template(self.config.prompt).substitute(context=original_context, question=data.question)
response = self.client.chat.completions.create(
model=self.config.model, messages=[{"role": "user", "content": prompt}]
)
useful_context = response.choices[0].message.content.strip()
useful_context_sentences = self._sentence_segmenter(useful_context)
original_context_sentences = self._sentence_segmenter(original_context)
if not original_context_sentences:
return 0.0
return len(useful_context_sentences) / len(original_context_sentences)
def evaluate(self, dataset: list[EvalData]) -> float:
"""
Evaluates the dataset and returns the average context relevance score.
"""
scores = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self._compute_score, data) for data in dataset]
for future in tqdm(
concurrent.futures.as_completed(futures), total=len(dataset), desc="Evaluating Context Relevancy"
):
try:
scores.append(future.result())
except Exception as e:
print(f"Error during evaluation: {e}")
return np.mean(scores) if scores else 0.0

View File

@@ -0,0 +1,102 @@
import concurrent.futures
import logging
import os
from string import Template
from typing import Optional
import numpy as np
from openai import OpenAI
from tqdm import tqdm
from embedchain.config.eval.base import GroundednessConfig
from embedchain.eval.base import BaseMetric
from embedchain.utils.eval import EvalData, EvalMetric
class Groundedness(BaseMetric):
"""
Metric for groundedness (aka faithfulness) of answer from the given contexts.
"""
def __init__(self, config: Optional[GroundednessConfig] = None):
super().__init__(name=EvalMetric.GROUNDEDNESS.value)
self.config = config or GroundednessConfig()
api_key = self.config.api_key or os.environ["OPENAI_API_KEY"]
if not api_key:
raise ValueError("Please set the OPENAI_API_KEY environment variable or pass the `api_key` in config.")
self.client = OpenAI(api_key=api_key)
def _generate_answer_claim_prompt(self, data: EvalData) -> str:
"""
Generate the prompt for the given data.
"""
prompt = Template(self.config.answer_claims_prompt).substitute(question=data.question, answer=data.answer)
return prompt
def _get_claim_statements(self, prompt: str) -> np.ndarray:
"""
Get claim statements from the answer.
"""
response = self.client.chat.completions.create(
model=self.config.model,
messages=[{"role": "user", "content": f"{prompt}"}],
)
result = response.choices[0].message.content.strip()
claim_statements = np.array([statement for statement in result.split("\n") if statement])
return claim_statements
def _generate_claim_inference_prompt(self, data: EvalData, claim_statements: list[str]) -> str:
"""
Generate the claim inference prompt for the given data and claim statements.
"""
prompt = Template(self.config.claims_inference_prompt).substitute(
context="\n".join(data.contexts), claim_statements="\n".join(claim_statements)
)
return prompt
def _get_claim_verdict_scores(self, prompt: str) -> np.ndarray:
"""
Get verdicts for claim statements.
"""
response = self.client.chat.completions.create(
model=self.config.model,
messages=[{"role": "user", "content": f"{prompt}"}],
)
result = response.choices[0].message.content.strip()
claim_verdicts = result.split("\n")
verdict_score_map = {"1": 1, "0": 0, "-1": np.nan}
verdict_scores = np.array([verdict_score_map[verdict] for verdict in claim_verdicts])
return verdict_scores
def _compute_score(self, data: EvalData) -> float:
"""
Compute the groundedness score (aka faithfulness) for a single data point.
"""
answer_claims_prompt = self._generate_answer_claim_prompt(data)
claim_statements = self._get_claim_statements(answer_claims_prompt)
claim_inference_prompt = self._generate_claim_inference_prompt(data, claim_statements)
verdict_scores = self._get_claim_verdict_scores(claim_inference_prompt)
return np.sum(verdict_scores) / claim_statements.size
def evaluate(self, dataset: list[EvalData]):
"""
Evaluate the dataset and returns the average groundedness score.
"""
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_data = {executor.submit(self._compute_score, data): data for data in dataset}
for future in tqdm(
concurrent.futures.as_completed(future_to_data),
total=len(future_to_data),
desc="Evaluating groundedness (aka faithfulness)",
):
data = future_to_data[future]
try:
score = future.result()
results.append(score)
except Exception as e:
logging.error(f"Error while evaluating groundedness for data point {data}: {e}")
return np.mean(results) if results else 0.0

17
embedchain/utils/eval.py Normal file
View File

@@ -0,0 +1,17 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel
class EvalMetric(Enum):
CONTEXT_RELEVANCY = "context_relevancy"
ANSWER_RELEVANCY = "answer_relevancy"
GROUNDEDNESS = "groundedness"
class EvalData(BaseModel):
question: str
contexts: list[str]
answer: str
ground_truth: Optional[str] = None # Not used as of now

View File

@@ -201,7 +201,8 @@ def detect_datatype(source: Any) -> DataType:
formatted_source = format_source(str(source), 30) formatted_source = format_source(str(source), 30)
if url: if url:
from langchain.document_loaders.youtube import ALLOWED_NETLOCK as YOUTUBE_ALLOWED_NETLOCS from langchain.document_loaders.youtube import \
ALLOWED_NETLOCK as YOUTUBE_ALLOWED_NETLOCS
if url.netloc in YOUTUBE_ALLOWED_NETLOCS: if url.netloc in YOUTUBE_ALLOWED_NETLOCS:
logging.debug(f"Source of `{formatted_source}` detected as `youtube_video`.") logging.debug(f"Source of `{formatted_source}` detected as `youtube_video`.")

View File

@@ -6,15 +6,8 @@ from embedchain.helpers.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB from embedchain.vectordb.base import BaseVectorDB
try: try:
from pymilvus import ( from pymilvus import (Collection, CollectionSchema, DataType, FieldSchema,
Collection, MilvusClient, connections, utility)
CollectionSchema,
DataType,
FieldSchema,
MilvusClient,
connections,
utility,
)
except ImportError: except ImportError:
raise ImportError( raise ImportError(
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`" "Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"

12
poetry.lock generated
View File

@@ -5267,6 +5267,16 @@ files = [
{file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"},
] ]
[[package]]
name = "pysbd"
version = "0.3.4"
description = "pysbd (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box across many languages."
optional = false
python-versions = ">=3"
files = [
{file = "pysbd-0.3.4-py3-none-any.whl", hash = "sha256:cd838939b7b0b185fcf86b0baf6636667dfb6e474743beeff878e9f42e022953"},
]
[[package]] [[package]]
name = "pytesseract" name = "pytesseract"
version = "0.3.10" version = "0.3.10"
@@ -8120,4 +8130,4 @@ youtube = ["youtube-transcript-api", "yt_dlp"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.9,<3.12" python-versions = ">=3.9,<3.12"
content-hash = "e22ac2ddd59d53039c47f326504364ff3a8000df9a954d79fbe671c75e88599f" content-hash = "02bd85e14374a9dc9b59523b8fb4baea7068251976ba7f87722cac94a9974ccc"

View File

@@ -102,6 +102,7 @@ rich = "^13.7.0"
beautifulsoup4 = "^4.12.2" beautifulsoup4 = "^4.12.2"
pypdf = "^3.11.0" pypdf = "^3.11.0"
gptcache = "^0.1.43" gptcache = "^0.1.43"
pysbd = "^0.3.4"
tiktoken = { version = "^0.4.0", optional = true } tiktoken = { version = "^0.4.0", optional = true }
youtube-transcript-api = { version = "^0.6.1", optional = true } youtube-transcript-api = { version = "^0.6.1", optional = true }
pytube = { version = "^15.0.0", optional = true } pytube = { version = "^15.0.0", optional = true }