[Feature] Add support for RAG evaluation (#1154)
Co-authored-by: Deven Patel <deven298@yahoo.com> Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
41
docs/api-reference/pipeline/evaluate.mdx
Normal file
41
docs/api-reference/pipeline/evaluate.mdx
Normal file
@@ -0,0 +1,41 @@
|
||||
---
|
||||
title: '📝 evaluate'
|
||||
---
|
||||
|
||||
`evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below:
|
||||
|
||||
### Parameters
|
||||
|
||||
<ParamField path="question" type="Union[str, list[str]]">
|
||||
A question or a list of questions to evaluate your app on.
|
||||
</ParamField>
|
||||
<ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional>
|
||||
The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]`
|
||||
</ParamField>
|
||||
<ParamField path="num_workers" type="int" optional>
|
||||
Specify the number of threads to use for parallel processing.
|
||||
</ParamField>
|
||||
|
||||
### Returns
|
||||
|
||||
<ResponseField name="metrics" type="dict">
|
||||
Returns the metrics you have chosen to evaluate your app on as a dictionary.
|
||||
</ResponseField>
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
app = App()
|
||||
|
||||
# add data source
|
||||
app.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
# run evaluation
|
||||
app.evaluate("what is the net worth of Elon Musk?")
|
||||
# {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613}
|
||||
|
||||
# or
|
||||
# app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"])
|
||||
```
|
||||
Reference in New Issue
Block a user