Add Jina LLM support (#760)
This commit is contained in:
@@ -27,6 +27,7 @@ The following LLM providers are supported by Embedchain:
|
|||||||
- GPT4ALL
|
- GPT4ALL
|
||||||
- AZURE_OPENAI
|
- AZURE_OPENAI
|
||||||
- LLAMA2
|
- LLAMA2
|
||||||
|
- JINA
|
||||||
- COHERE
|
- COHERE
|
||||||
|
|
||||||
You can choose one by importing it from `embedchain.llm`. E.g.:
|
You can choose one by importing it from `embedchain.llm`. E.g.:
|
||||||
|
|||||||
42
embedchain/llm/jina.py
Normal file
42
embedchain/llm/jina.py
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
import os
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from langchain.chat_models import JinaChat
|
||||||
|
from langchain.schema import HumanMessage, SystemMessage
|
||||||
|
|
||||||
|
from embedchain.config import BaseLlmConfig
|
||||||
|
from embedchain.helper.json_serializable import register_deserializable
|
||||||
|
from embedchain.llm.base import BaseLlm
|
||||||
|
|
||||||
|
|
||||||
|
@register_deserializable
|
||||||
|
class JinaLlm(BaseLlm):
|
||||||
|
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||||
|
if "JINACHAT_API_KEY" not in os.environ:
|
||||||
|
raise ValueError("Please set the JINACHAT_API_KEY environment variable.")
|
||||||
|
super().__init__(config=config)
|
||||||
|
|
||||||
|
def get_llm_model_answer(self, prompt):
|
||||||
|
response = JinaLlm._get_answer(prompt, self.config)
|
||||||
|
return response
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||||
|
messages = []
|
||||||
|
if config.system_prompt:
|
||||||
|
messages.append(SystemMessage(content=config.system_prompt))
|
||||||
|
messages.append(HumanMessage(content=prompt))
|
||||||
|
kwargs = {
|
||||||
|
"temperature": config.temperature,
|
||||||
|
"max_tokens": config.max_tokens,
|
||||||
|
"model_kwargs": {},
|
||||||
|
}
|
||||||
|
if config.top_p:
|
||||||
|
kwargs["model_kwargs"]["top_p"] = config.top_p
|
||||||
|
if config.stream:
|
||||||
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
|
|
||||||
|
chat = JinaChat(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
|
||||||
|
else:
|
||||||
|
chat = JinaChat(**kwargs)
|
||||||
|
return chat(messages).content
|
||||||
40
tests/llm/test_jina.py
Normal file
40
tests/llm/test_jina.py
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
import os
|
||||||
|
import unittest
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
from embedchain.config import BaseLlmConfig
|
||||||
|
from embedchain.llm.jina import JinaLlm
|
||||||
|
|
||||||
|
|
||||||
|
class TestJinaLlm(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
os.environ["JINACHAT_API_KEY"] = "test_api_key"
|
||||||
|
self.config = BaseLlmConfig(
|
||||||
|
temperature=0.7, max_tokens=50, top_p=0.8, stream=False, system_prompt="System prompt"
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_init_raises_value_error_without_api_key(self):
|
||||||
|
os.environ.pop("JINACHAT_API_KEY")
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
JinaLlm()
|
||||||
|
|
||||||
|
@patch("embedchain.llm.jina.JinaLlm._get_answer")
|
||||||
|
def test_get_llm_model_answer(self, mock_get_answer):
|
||||||
|
mock_get_answer.return_value = "Test answer"
|
||||||
|
|
||||||
|
llm = JinaLlm(self.config)
|
||||||
|
answer = llm.get_llm_model_answer("Test query")
|
||||||
|
|
||||||
|
self.assertEqual(answer, "Test answer")
|
||||||
|
mock_get_answer.assert_called_once()
|
||||||
|
|
||||||
|
@patch("embedchain.llm.jina.JinaLlm._get_answer")
|
||||||
|
def test_get_llm_model_answer_with_system_prompt(self, mock_get_answer):
|
||||||
|
self.config.system_prompt = "Custom system prompt"
|
||||||
|
mock_get_answer.return_value = "Test answer"
|
||||||
|
|
||||||
|
llm = JinaLlm(self.config)
|
||||||
|
answer = llm.get_llm_model_answer("Test query")
|
||||||
|
|
||||||
|
self.assertEqual(answer, "Test answer")
|
||||||
|
mock_get_answer.assert_called_once()
|
||||||
Reference in New Issue
Block a user