AWS Bedrock Integration and spell checks (#3124)

This commit is contained in:
Antaripa Saha
2025-07-08 22:46:44 +05:30
committed by GitHub
parent ec9b0688d8
commit de0513fc9f
11 changed files with 162 additions and 29 deletions

View File

@@ -7,10 +7,10 @@ Integrate [**Mem0**](https://github.com/mem0ai/mem0) with [Agno](https://github.
## Overview
1. 🧠 Store and retrieve memories from Mem0 within Agno agents
2. 🖼️ Support for multimodal interactions (text and images)
3. 🔍 Semantic search for relevant past conversations
4. 🌐 Personalized responses based on user history
1. Store and retrieve memories from Mem0 within Agno agents
2. Support for multimodal interactions (text and images)
3. Semantic search for relevant past conversations
4. Personalized responses based on user history
## Prerequisites

View File

@@ -0,0 +1,132 @@
---
title: AWS Bedrock
---
<Snippet file="security-compliance.mdx" />
This integration demonstrates how to use **Mem0** with **AWS Bedrock** and **Amazon OpenSearch Service (AOSS)** to enable persistent, semantic memory in intelligent agents.
## Overview
In this guide, you'll:
1. Configure AWS credentials to enable Bedrock and OpenSearch access
2. Set up the Mem0 SDK to use Bedrock for embeddings and LLM
3. Store and retrieve memories using OpenSearch as a vector store
4. Build memory-aware applications with scalable cloud infrastructure
## Prerequisites
- AWS account with access to:
- Bedrock foundation models (e.g., Titan, Claude)
- OpenSearch Service with a configured domain
- Python 3.8+
- Valid AWS credentials (via environment or IAM role)
## Setup and Installation
Install required packages:
```bash
pip install mem0ai boto3 opensearch-py
```
Set environment variables:
Be sure to configure your AWS credentials using environment variables, IAM roles, or the AWS CLI.
```python
import os
os.environ['AWS_REGION'] = 'us-west-2'
os.environ['AWS_ACCESS_KEY_ID'] = 'AKIA...'
os.environ['AWS_SECRET_ACCESS_KEY'] = 'AS...'
```
## Initialize Mem0 Integration
Import necessary modules and configure Mem0:
```python
import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
from mem0.memory.main import Memory
region = 'us-west-2'
service = 'aoss'
credentials = boto3.Session().get_credentials()
auth = AWSV4SignerAuth(credentials, region, service)
config = {
"embedder": {
"provider": "aws_bedrock",
"config": {
"model": "amazon.titan-embed-text-v2:0"
}
},
"llm": {
"provider": "aws_bedrock",
"config": {
"model": "anthropic.claude-3-5-haiku-20241022-v1:0",
"temperature": 0.1,
"max_tokens": 2000
}
},
"vector_store": {
"provider": "opensearch",
"config": {
"collection_name": "mem0",
"host": "your-opensearch-domain.us-west-2.es.amazonaws.com",
"port": 443,
"http_auth": auth,
"embedding_model_dims": 1024,
"connection_class": RequestsHttpConnection,
"pool_maxsize": 20,
"use_ssl": True,
"verify_certs": True
}
}
}
# Initialize memory system
m = Memory.from_config(config)
```
## Memory Operations
Use Mem0 with your Bedrock-powered LLM and OpenSearch storage backend:
```python
# Store conversational context
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller?"},
{"role": "user", "content": "I prefer sci-fi."},
{"role": "assistant", "content": "Noted! I'll suggest sci-fi movies next time."}
]
m.add(messages, user_id="alice", metadata={"category": "movie_recommendations"})
# Search for memory
relevant = m.search("What kind of movies does Alice like?", user_id="alice")
# Retrieve all user memories
all_memories = m.get_all(user_id="alice")
```
## Key Features
1. **Serverless Memory Embeddings**: Use Titan or other Bedrock models for fast, cloud-native embeddings
2. **Scalable Vector Search**: Store and retrieve vectorized memories via OpenSearch
3. **Seamless AWS Auth**: Uses AWS IAM or environment variables to securely authenticate
4. **User-specific Memory Spaces**: Memories are isolated per user ID
5. **Persistent Memory Context**: Maintain and recall history across sessions
## Help
- [AWS Bedrock Documentation](https://docs.aws.amazon.com/bedrock/)
- [Amazon OpenSearch Service Docs](https://docs.aws.amazon.com/opensearch-service/)
- [Mem0 Platform](https://app.mem0.ai)
<Snippet file="get-help.mdx" />

View File

@@ -64,11 +64,11 @@ Create functions to handle context retrieval, response generation, and addition
def retrieve_context(query: str, user_id: str) -> List[Dict]:
"""Retrieve relevant context from Mem0"""
memories = mem0.search(query, user_id=user_id)
seralized_memories = ' '.join([mem["memory"] for mem in memories])
serialized_memories = ' '.join([mem["memory"] for mem in memories])
context = [
{
"role": "system",
"content": f"Relevant information: {seralized_memories}"
"content": f"Relevant information: {serialized_memories}"
},
{
"role": "user",

View File

@@ -103,7 +103,7 @@ memory_from_config = Mem0Memory.from_config(
)
```
Intilaize the LLM
Initialize the LLM
```python
import os