Formatting (#2750)
This commit is contained in:
@@ -10,9 +10,7 @@ from mem0.embeddings.lmstudio import LMStudioEmbedding
|
||||
def mock_lm_studio_client():
|
||||
with patch("mem0.embeddings.lmstudio.OpenAI") as mock_openai:
|
||||
mock_client = Mock()
|
||||
mock_client.embeddings.create.return_value = Mock(
|
||||
data=[Mock(embedding=[0.1, 0.2, 0.3, 0.4, 0.5])]
|
||||
)
|
||||
mock_client.embeddings.create.return_value = Mock(data=[Mock(embedding=[0.1, 0.2, 0.3, 0.4, 0.5])])
|
||||
mock_openai.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
@@ -23,7 +23,9 @@ def test_embed_default_model(mock_openai_client):
|
||||
|
||||
result = embedder.embed("Hello world")
|
||||
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(input=["Hello world"], model="text-embedding-3-small", dimensions = 1536)
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(
|
||||
input=["Hello world"], model="text-embedding-3-small", dimensions=1536
|
||||
)
|
||||
assert result == [0.1, 0.2, 0.3]
|
||||
|
||||
|
||||
@@ -37,7 +39,7 @@ def test_embed_custom_model(mock_openai_client):
|
||||
result = embedder.embed("Test embedding")
|
||||
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(
|
||||
input=["Test embedding"], model="text-embedding-2-medium", dimensions = 1024
|
||||
input=["Test embedding"], model="text-embedding-2-medium", dimensions=1024
|
||||
)
|
||||
assert result == [0.4, 0.5, 0.6]
|
||||
|
||||
@@ -51,7 +53,9 @@ def test_embed_removes_newlines(mock_openai_client):
|
||||
|
||||
result = embedder.embed("Hello\nworld")
|
||||
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(input=["Hello world"], model="text-embedding-3-small", dimensions = 1536)
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(
|
||||
input=["Hello world"], model="text-embedding-3-small", dimensions=1536
|
||||
)
|
||||
assert result == [0.7, 0.8, 0.9]
|
||||
|
||||
|
||||
@@ -65,7 +69,7 @@ def test_embed_without_api_key_env_var(mock_openai_client):
|
||||
result = embedder.embed("Testing API key")
|
||||
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(
|
||||
input=["Testing API key"], model="text-embedding-3-small", dimensions = 1536
|
||||
input=["Testing API key"], model="text-embedding-3-small", dimensions=1536
|
||||
)
|
||||
assert result == [1.0, 1.1, 1.2]
|
||||
|
||||
@@ -81,6 +85,6 @@ def test_embed_uses_environment_api_key(mock_openai_client, monkeypatch):
|
||||
result = embedder.embed("Environment key test")
|
||||
|
||||
mock_openai_client.embeddings.create.assert_called_once_with(
|
||||
input=["Environment key test"], model="text-embedding-3-small", dimensions = 1536
|
||||
input=["Environment key test"], model="text-embedding-3-small", dimensions=1536
|
||||
)
|
||||
assert result == [1.3, 1.4, 1.5]
|
||||
|
||||
@@ -24,11 +24,20 @@ def mock_config():
|
||||
with patch("mem0.configs.embeddings.base.BaseEmbedderConfig") as mock_config:
|
||||
mock_config.return_value.vertex_credentials_json = "/path/to/credentials.json"
|
||||
yield mock_config
|
||||
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embedding_types():
|
||||
return ["SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY"]
|
||||
return [
|
||||
"SEMANTIC_SIMILARITY",
|
||||
"CLASSIFICATION",
|
||||
"CLUSTERING",
|
||||
"RETRIEVAL_DOCUMENT",
|
||||
"RETRIEVAL_QUERY",
|
||||
"QUESTION_ANSWERING",
|
||||
"FACT_VERIFICATION",
|
||||
"CODE_RETRIEVAL_QUERY",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -79,30 +88,31 @@ def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_con
|
||||
assert result == [0.4, 0.5, 0.6]
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_with_memory_action(mock_text_embedding_model, mock_os_environ, mock_config, mock_embedding_types, mock_text_embedding_input):
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_with_memory_action(
|
||||
mock_text_embedding_model, mock_os_environ, mock_config, mock_embedding_types, mock_text_embedding_input
|
||||
):
|
||||
mock_config.return_value.model = "text-embedding-004"
|
||||
mock_config.return_value.embedding_dims = 256
|
||||
|
||||
|
||||
for embedding_type in mock_embedding_types:
|
||||
|
||||
mock_config.return_value.memory_add_embedding_type = embedding_type
|
||||
mock_config.return_value.memory_update_embedding_type = embedding_type
|
||||
mock_config.return_value.memory_search_embedding_type = embedding_type
|
||||
|
||||
config = mock_config()
|
||||
embedder = VertexAIEmbedding(config)
|
||||
|
||||
|
||||
mock_text_embedding_model.from_pretrained.assert_called_with("text-embedding-004")
|
||||
|
||||
for memory_action in ["add", "update", "search"]:
|
||||
embedder.embed("Hello world", memory_action=memory_action)
|
||||
|
||||
|
||||
mock_text_embedding_input.assert_called_with(text="Hello world", task_type=embedding_type)
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_with(
|
||||
texts=[mock_text_embedding_input("Hello world", embedding_type)], output_dimensionality=256
|
||||
)
|
||||
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.os")
|
||||
def test_credentials_from_environment(mock_os, mock_text_embedding_model, mock_config):
|
||||
@@ -137,15 +147,15 @@ def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_envi
|
||||
result = embedder.embed("Large embedding test")
|
||||
|
||||
assert result == [0.1] * 1024
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_invalid_memory_action(mock_text_embedding_model, mock_config):
|
||||
mock_config.return_value.model = "text-embedding-004"
|
||||
mock_config.return_value.embedding_dims = 256
|
||||
|
||||
|
||||
config = mock_config()
|
||||
embedder = VertexAIEmbedding(config)
|
||||
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
embedder.embed("Hello world", memory_action="invalid_action")
|
||||
embedder.embed("Hello world", memory_action="invalid_action")
|
||||
|
||||
Reference in New Issue
Block a user