Formatting (#2750)
This commit is contained in:
@@ -34,17 +34,17 @@ from mem0.utils.factory import EmbedderFactory, LlmFactory, VectorStoreFactory
|
||||
|
||||
|
||||
def _build_filters_and_metadata(
|
||||
*, # Enforce keyword-only arguments
|
||||
*, # Enforce keyword-only arguments
|
||||
user_id: Optional[str] = None,
|
||||
agent_id: Optional[str] = None,
|
||||
run_id: Optional[str] = None,
|
||||
actor_id: Optional[str] = None, # For query-time filtering
|
||||
actor_id: Optional[str] = None, # For query-time filtering
|
||||
input_metadata: Optional[Dict[str, Any]] = None,
|
||||
input_filters: Optional[Dict[str, Any]] = None,
|
||||
) -> tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Constructs metadata for storage and filters for querying based on session and actor identifiers.
|
||||
|
||||
|
||||
This helper ties every memory/query to exactly one session id (`user_id`, `agent_id`, or `run_id`) and optionally narrows queries to a specific `actor_id`. It returns two dicts:
|
||||
|
||||
|
||||
@@ -78,10 +78,10 @@ def _build_filters_and_metadata(
|
||||
- effective_query_filters (Dict[str, Any]): Filters for querying memories,
|
||||
scoped to the determined session and potentially a resolved actor.
|
||||
"""
|
||||
|
||||
|
||||
base_metadata_template = deepcopy(input_metadata) if input_metadata else {}
|
||||
effective_query_filters = deepcopy(input_filters) if input_filters else {}
|
||||
|
||||
|
||||
# ---------- resolve session id (mandatory) ----------
|
||||
session_key, session_val = None, None
|
||||
if user_id:
|
||||
@@ -90,20 +90,20 @@ def _build_filters_and_metadata(
|
||||
session_key, session_val = "agent_id", agent_id
|
||||
elif run_id:
|
||||
session_key, session_val = "run_id", run_id
|
||||
|
||||
|
||||
if session_key is None:
|
||||
raise ValueError("One of 'user_id', 'agent_id', or 'run_id' must be provided.")
|
||||
|
||||
|
||||
base_metadata_template[session_key] = session_val
|
||||
effective_query_filters[session_key] = session_val
|
||||
|
||||
|
||||
# ---------- optional actor filter ----------
|
||||
resolved_actor_id = actor_id or effective_query_filters.get("actor_id")
|
||||
if resolved_actor_id:
|
||||
effective_query_filters["actor_id"] = resolved_actor_id
|
||||
|
||||
|
||||
return base_metadata_template, effective_query_filters
|
||||
|
||||
|
||||
|
||||
setup_config()
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -189,7 +189,7 @@ class Memory(MemoryBase):
|
||||
):
|
||||
"""
|
||||
Create a new memory.
|
||||
|
||||
|
||||
Adds new memories scoped to a single session id (e.g. `user_id`, `agent_id`, or `run_id`). One of those ids is required.
|
||||
|
||||
Args:
|
||||
@@ -208,7 +208,7 @@ class Memory(MemoryBase):
|
||||
creating procedural memories (typically requires 'agent_id'). Otherwise, memories
|
||||
are treated as general conversational/factual memories.memory_type (str, optional): Type of memory to create. Defaults to None. By default, it creates the short term memories and long term (semantic and episodic) memories. Pass "procedural_memory" to create procedural memories.
|
||||
prompt (str, optional): Prompt to use for the memory creation. Defaults to None.
|
||||
|
||||
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the result of the memory addition operation, typically
|
||||
@@ -216,14 +216,14 @@ class Memory(MemoryBase):
|
||||
and potentially "relations" if graph store is enabled.
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "event": "ADD"}]}`
|
||||
"""
|
||||
|
||||
|
||||
processed_metadata, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_metadata=metadata,
|
||||
)
|
||||
|
||||
|
||||
if memory_type is not None and memory_type != MemoryType.PROCEDURAL.value:
|
||||
raise ValueError(
|
||||
f"Invalid 'memory_type'. Please pass {MemoryType.PROCEDURAL.value} to create procedural memories."
|
||||
@@ -231,10 +231,10 @@ class Memory(MemoryBase):
|
||||
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
|
||||
elif isinstance(messages, dict):
|
||||
messages = [messages]
|
||||
|
||||
|
||||
elif not isinstance(messages, list):
|
||||
raise ValueError("messages must be str, dict, or list[dict]")
|
||||
|
||||
@@ -255,7 +255,7 @@ class Memory(MemoryBase):
|
||||
|
||||
vector_store_result = future1.result()
|
||||
graph_result = future2.result()
|
||||
|
||||
|
||||
if self.api_version == "v1.0":
|
||||
warnings.warn(
|
||||
"The current add API output format is deprecated. "
|
||||
@@ -277,21 +277,21 @@ class Memory(MemoryBase):
|
||||
def _add_to_vector_store(self, messages, metadata, filters, infer):
|
||||
if not infer:
|
||||
returned_memories = []
|
||||
for message_dict in messages:
|
||||
if not isinstance(message_dict, dict) or \
|
||||
message_dict.get("role") is None or \
|
||||
message_dict.get("content") is None:
|
||||
for message_dict in messages:
|
||||
if (
|
||||
not isinstance(message_dict, dict)
|
||||
or message_dict.get("role") is None
|
||||
or message_dict.get("content") is None
|
||||
):
|
||||
logger.warning(f"Skipping invalid message format: {message_dict}")
|
||||
continue
|
||||
|
||||
if message_dict["role"] == "system":
|
||||
continue
|
||||
continue
|
||||
|
||||
|
||||
per_msg_meta = deepcopy(metadata)
|
||||
per_msg_meta["role"] = message_dict["role"]
|
||||
|
||||
|
||||
actor_name = message_dict.get("name")
|
||||
if actor_name:
|
||||
per_msg_meta["actor_id"] = actor_name
|
||||
@@ -311,8 +311,8 @@ class Memory(MemoryBase):
|
||||
)
|
||||
return returned_memories
|
||||
|
||||
parsed_messages = parse_messages(messages)
|
||||
|
||||
parsed_messages = parse_messages(messages)
|
||||
|
||||
if self.config.custom_fact_extraction_prompt:
|
||||
system_prompt = self.config.custom_fact_extraction_prompt
|
||||
user_prompt = f"Input:\n{parsed_messages}"
|
||||
@@ -336,7 +336,7 @@ class Memory(MemoryBase):
|
||||
|
||||
retrieved_old_memory = []
|
||||
new_message_embeddings = {}
|
||||
for new_mem in new_retrieved_facts:
|
||||
for new_mem in new_retrieved_facts:
|
||||
messages_embeddings = self.embedding_model.embed(new_mem, "add")
|
||||
new_message_embeddings[new_mem] = messages_embeddings
|
||||
existing_memories = self.vector_store.search(
|
||||
@@ -347,7 +347,7 @@ class Memory(MemoryBase):
|
||||
)
|
||||
for mem in existing_memories:
|
||||
retrieved_old_memory.append({"id": mem.id, "text": mem.payload["data"]})
|
||||
|
||||
|
||||
unique_data = {}
|
||||
for item in retrieved_old_memory:
|
||||
unique_data[item["id"]] = item
|
||||
@@ -389,7 +389,7 @@ class Memory(MemoryBase):
|
||||
if not action_text:
|
||||
logging.info("Skipping memory entry because of empty `text` field.")
|
||||
continue
|
||||
|
||||
|
||||
event_type = resp.get("event")
|
||||
if event_type == "ADD":
|
||||
memory_id = self._create_memory(
|
||||
@@ -405,16 +405,23 @@ class Memory(MemoryBase):
|
||||
existing_embeddings=new_message_embeddings,
|
||||
metadata=deepcopy(metadata),
|
||||
)
|
||||
returned_memories.append({
|
||||
"id": temp_uuid_mapping[resp.get("id")], "memory": action_text,
|
||||
"event": event_type, "previous_memory": resp.get("old_memory"),
|
||||
})
|
||||
returned_memories.append(
|
||||
{
|
||||
"id": temp_uuid_mapping[resp.get("id")],
|
||||
"memory": action_text,
|
||||
"event": event_type,
|
||||
"previous_memory": resp.get("old_memory"),
|
||||
}
|
||||
)
|
||||
elif event_type == "DELETE":
|
||||
self._delete_memory(memory_id=temp_uuid_mapping[resp.get("id")])
|
||||
returned_memories.append({
|
||||
"id": temp_uuid_mapping[resp.get("id")], "memory": action_text,
|
||||
"event": event_type,
|
||||
})
|
||||
returned_memories.append(
|
||||
{
|
||||
"id": temp_uuid_mapping[resp.get("id")],
|
||||
"memory": action_text,
|
||||
"event": event_type,
|
||||
}
|
||||
)
|
||||
elif event_type == "NONE":
|
||||
logging.info("NOOP for Memory.")
|
||||
except Exception as e:
|
||||
@@ -462,11 +469,8 @@ class Memory(MemoryBase):
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
result_item = MemoryItem(
|
||||
id=memory.id,
|
||||
@@ -479,18 +483,16 @@ class Memory(MemoryBase):
|
||||
for key in promoted_payload_keys:
|
||||
if key in memory.payload:
|
||||
result_item[key] = memory.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
result_item["metadata"] = additional_metadata
|
||||
|
||||
|
||||
return result_item
|
||||
|
||||
def get_all(
|
||||
self,
|
||||
*,
|
||||
*,
|
||||
user_id: Optional[str] = None,
|
||||
agent_id: Optional[str] = None,
|
||||
run_id: Optional[str] = None,
|
||||
@@ -505,7 +507,7 @@ class Memory(MemoryBase):
|
||||
agent_id (str, optional): agent id
|
||||
run_id (str, optional): run id
|
||||
filters (dict, optional): Additional custom key-value filters to apply to the search.
|
||||
These are merged with the ID-based scoping filters. For example,
|
||||
These are merged with the ID-based scoping filters. For example,
|
||||
`filters={"actor_id": "some_user"}`.
|
||||
limit (int, optional): The maximum number of memories to return. Defaults to 100.
|
||||
|
||||
@@ -515,21 +517,16 @@ class Memory(MemoryBase):
|
||||
it might return a direct list (see deprecation warning).
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", ...}]}`
|
||||
"""
|
||||
|
||||
|
||||
_, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_filters=filters
|
||||
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
||||
)
|
||||
|
||||
|
||||
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
||||
raise ValueError("At least one of 'user_id', 'agent_id', or 'run_id' must be specified.")
|
||||
|
||||
capture_event(
|
||||
"mem0.get_all",
|
||||
self,
|
||||
{"limit": limit, "keys": list(effective_filters.keys()), "sync_type": "sync"}
|
||||
"mem0.get_all", self, {"limit": limit, "keys": list(effective_filters.keys()), "sync_type": "sync"}
|
||||
)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
@@ -542,9 +539,9 @@ class Memory(MemoryBase):
|
||||
[future_memories, future_graph_entities] if future_graph_entities else [future_memories]
|
||||
)
|
||||
|
||||
all_memories_result = future_memories.result()
|
||||
all_memories_result = future_memories.result()
|
||||
graph_entities_result = future_graph_entities.result() if future_graph_entities else None
|
||||
|
||||
|
||||
if self.enable_graph:
|
||||
return {"results": all_memories_result, "relations": graph_entities_result}
|
||||
|
||||
@@ -556,26 +553,27 @@ class Memory(MemoryBase):
|
||||
category=DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return all_memories_result
|
||||
return all_memories_result
|
||||
else:
|
||||
return {"results": all_memories_result}
|
||||
|
||||
def _get_all_from_vector_store(self, filters, limit):
|
||||
memories_result = self.vector_store.list(filters=filters, limit=limit)
|
||||
actual_memories = memories_result[0] if isinstance(memories_result, tuple) and len(memories_result) > 0 else memories_result
|
||||
actual_memories = (
|
||||
memories_result[0] if isinstance(memories_result, tuple) and len(memories_result) > 0 else memories_result
|
||||
)
|
||||
|
||||
promoted_payload_keys = [
|
||||
"user_id", "agent_id", "run_id",
|
||||
"user_id",
|
||||
"agent_id",
|
||||
"run_id",
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
formatted_memories = []
|
||||
for mem in actual_memories:
|
||||
for mem in actual_memories:
|
||||
memory_item_dict = MemoryItem(
|
||||
id=mem.id,
|
||||
memory=mem.payload["data"],
|
||||
@@ -587,15 +585,13 @@ class Memory(MemoryBase):
|
||||
for key in promoted_payload_keys:
|
||||
if key in mem.payload:
|
||||
memory_item_dict[key] = mem.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
memory_item_dict["metadata"] = additional_metadata
|
||||
|
||||
|
||||
formatted_memories.append(memory_item_dict)
|
||||
|
||||
|
||||
return formatted_memories
|
||||
|
||||
def search(
|
||||
@@ -624,12 +620,9 @@ class Memory(MemoryBase):
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "score": 0.8, ...}]}`
|
||||
"""
|
||||
_, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_filters=filters
|
||||
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
||||
)
|
||||
|
||||
|
||||
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
||||
raise ValueError("At least one of 'user_id', 'agent_id', or 'run_id' must be specified.")
|
||||
|
||||
@@ -651,7 +644,7 @@ class Memory(MemoryBase):
|
||||
|
||||
original_memories = future_memories.result()
|
||||
graph_entities = future_graph_entities.result() if future_graph_entities else None
|
||||
|
||||
|
||||
if self.enable_graph:
|
||||
return {"results": original_memories, "relations": graph_entities}
|
||||
|
||||
@@ -678,11 +671,8 @@ class Memory(MemoryBase):
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
original_memories = []
|
||||
for mem in memories:
|
||||
@@ -693,18 +683,16 @@ class Memory(MemoryBase):
|
||||
created_at=mem.payload.get("created_at"),
|
||||
updated_at=mem.payload.get("updated_at"),
|
||||
score=mem.score,
|
||||
).model_dump()
|
||||
).model_dump()
|
||||
|
||||
for key in promoted_payload_keys:
|
||||
if key in mem.payload:
|
||||
memory_item_dict[key] = mem.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
memory_item_dict["metadata"] = additional_metadata
|
||||
|
||||
|
||||
original_memories.append(memory_item_dict)
|
||||
|
||||
return original_memories
|
||||
@@ -738,7 +726,7 @@ class Memory(MemoryBase):
|
||||
self._delete_memory(memory_id)
|
||||
return {"message": "Memory deleted successfully!"}
|
||||
|
||||
def delete_all(self, user_id:Optional[str]=None, agent_id:Optional[str]=None, run_id:Optional[str]=None):
|
||||
def delete_all(self, user_id: Optional[str] = None, agent_id: Optional[str] = None, run_id: Optional[str] = None):
|
||||
"""
|
||||
Delete all memories.
|
||||
|
||||
@@ -860,11 +848,11 @@ class Memory(MemoryBase):
|
||||
except Exception:
|
||||
logger.error(f"Error getting memory with ID {memory_id} during update.")
|
||||
raise ValueError(f"Error getting memory with ID {memory_id}. Please provide a valid 'memory_id'")
|
||||
|
||||
|
||||
prev_value = existing_memory.payload.get("data")
|
||||
|
||||
new_metadata = deepcopy(metadata) if metadata is not None else {}
|
||||
|
||||
|
||||
new_metadata["data"] = data
|
||||
new_metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
||||
new_metadata["created_at"] = existing_memory.payload.get("created_at")
|
||||
@@ -875,7 +863,7 @@ class Memory(MemoryBase):
|
||||
if "agent_id" in existing_memory.payload:
|
||||
new_metadata["agent_id"] = existing_memory.payload["agent_id"]
|
||||
if "run_id" in existing_memory.payload:
|
||||
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
||||
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
||||
if "actor_id" in existing_memory.payload:
|
||||
new_metadata["actor_id"] = existing_memory.payload["actor_id"]
|
||||
if "role" in existing_memory.payload:
|
||||
@@ -885,14 +873,14 @@ class Memory(MemoryBase):
|
||||
embeddings = existing_embeddings[data]
|
||||
else:
|
||||
embeddings = self.embedding_model.embed(data, "update")
|
||||
|
||||
|
||||
self.vector_store.update(
|
||||
vector_id=memory_id,
|
||||
vector=embeddings,
|
||||
payload=new_metadata,
|
||||
)
|
||||
logger.info(f"Updating memory with ID {memory_id=} with {data=}")
|
||||
|
||||
|
||||
self.db.add_history(
|
||||
memory_id,
|
||||
prev_value,
|
||||
@@ -1037,12 +1025,9 @@ class AsyncMemory(MemoryBase):
|
||||
dict: A dictionary containing the result of the memory addition operation.
|
||||
"""
|
||||
processed_metadata, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_metadata=metadata
|
||||
user_id=user_id, agent_id=agent_id, run_id=run_id, input_metadata=metadata
|
||||
)
|
||||
|
||||
|
||||
if memory_type is not None and memory_type != MemoryType.PROCEDURAL.value:
|
||||
raise ValueError(
|
||||
f"Invalid 'memory_type'. Please pass {MemoryType.PROCEDURAL.value} to create procedural memories."
|
||||
@@ -1050,15 +1035,17 @@ class AsyncMemory(MemoryBase):
|
||||
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
|
||||
elif isinstance(messages, dict):
|
||||
messages = [messages]
|
||||
|
||||
|
||||
elif not isinstance(messages, list):
|
||||
raise ValueError("messages must be str, dict, or list[dict]")
|
||||
|
||||
if agent_id is not None and memory_type == MemoryType.PROCEDURAL.value:
|
||||
results = await self._create_procedural_memory(messages, metadata=processed_metadata, prompt=prompt, llm=llm)
|
||||
results = await self._create_procedural_memory(
|
||||
messages, metadata=processed_metadata, prompt=prompt, llm=llm
|
||||
)
|
||||
return results
|
||||
|
||||
if self.config.llm.config.get("enable_vision"):
|
||||
@@ -1066,7 +1053,9 @@ class AsyncMemory(MemoryBase):
|
||||
else:
|
||||
messages = parse_vision_messages(messages)
|
||||
|
||||
vector_store_task = asyncio.create_task(self._add_to_vector_store(messages, processed_metadata, effective_filters, infer))
|
||||
vector_store_task = asyncio.create_task(
|
||||
self._add_to_vector_store(messages, processed_metadata, effective_filters, infer)
|
||||
)
|
||||
graph_task = asyncio.create_task(self._add_to_graph(messages, effective_filters))
|
||||
|
||||
vector_store_result, graph_result = await asyncio.gather(vector_store_task, graph_task)
|
||||
@@ -1090,8 +1079,8 @@ class AsyncMemory(MemoryBase):
|
||||
return {"results": vector_store_result}
|
||||
|
||||
async def _add_to_vector_store(
|
||||
self,
|
||||
messages: list,
|
||||
self,
|
||||
messages: list,
|
||||
metadata: dict,
|
||||
filters: dict,
|
||||
infer: bool,
|
||||
@@ -1099,9 +1088,11 @@ class AsyncMemory(MemoryBase):
|
||||
if not infer:
|
||||
returned_memories = []
|
||||
for message_dict in messages:
|
||||
if not isinstance(message_dict, dict) or \
|
||||
message_dict.get("role") is None or \
|
||||
message_dict.get("content") is None:
|
||||
if (
|
||||
not isinstance(message_dict, dict)
|
||||
or message_dict.get("role") is None
|
||||
or message_dict.get("content") is None
|
||||
):
|
||||
logger.warning(f"Skipping invalid message format (async): {message_dict}")
|
||||
continue
|
||||
|
||||
@@ -1110,20 +1101,24 @@ class AsyncMemory(MemoryBase):
|
||||
|
||||
per_msg_meta = deepcopy(metadata)
|
||||
per_msg_meta["role"] = message_dict["role"]
|
||||
|
||||
|
||||
actor_name = message_dict.get("name")
|
||||
if actor_name:
|
||||
per_msg_meta["actor_id"] = actor_name
|
||||
|
||||
|
||||
msg_content = message_dict["content"]
|
||||
msg_embeddings = await asyncio.to_thread(self.embedding_model.embed, msg_content, "add")
|
||||
mem_id = await self._create_memory(msg_content, msg_embeddings, per_msg_meta)
|
||||
|
||||
returned_memories.append({
|
||||
"id": mem_id, "memory": msg_content, "event": "ADD",
|
||||
"actor_id": actor_name if actor_name else None,
|
||||
"role": message_dict["role"],
|
||||
})
|
||||
|
||||
returned_memories.append(
|
||||
{
|
||||
"id": mem_id,
|
||||
"memory": msg_content,
|
||||
"event": "ADD",
|
||||
"actor_id": actor_name if actor_name else None,
|
||||
"role": message_dict["role"],
|
||||
}
|
||||
)
|
||||
return returned_memories
|
||||
|
||||
parsed_messages = parse_messages(messages)
|
||||
@@ -1142,17 +1137,21 @@ class AsyncMemory(MemoryBase):
|
||||
response = remove_code_blocks(response)
|
||||
new_retrieved_facts = json.loads(response)["facts"]
|
||||
except Exception as e:
|
||||
logging.error(f"Error in new_retrieved_facts: {e}"); new_retrieved_facts = []
|
||||
logging.error(f"Error in new_retrieved_facts: {e}")
|
||||
new_retrieved_facts = []
|
||||
|
||||
retrieved_old_memory = []
|
||||
new_message_embeddings = {}
|
||||
|
||||
|
||||
async def process_fact_for_search(new_mem_content):
|
||||
embeddings = await asyncio.to_thread(self.embedding_model.embed, new_mem_content, "add")
|
||||
new_message_embeddings[new_mem_content] = embeddings
|
||||
existing_mems = await asyncio.to_thread(
|
||||
self.vector_store.search, query=new_mem_content, vectors=embeddings,
|
||||
limit=5, filters=filters, # 'filters' is query_filters_for_inference
|
||||
self.vector_store.search,
|
||||
query=new_mem_content,
|
||||
vectors=embeddings,
|
||||
limit=5,
|
||||
filters=filters, # 'filters' is query_filters_for_inference
|
||||
)
|
||||
return [{"id": mem.id, "text": mem.payload["data"]} for mem in existing_mems]
|
||||
|
||||
@@ -1160,9 +1159,10 @@ class AsyncMemory(MemoryBase):
|
||||
search_results_list = await asyncio.gather(*search_tasks)
|
||||
for result_group in search_results_list:
|
||||
retrieved_old_memory.extend(result_group)
|
||||
|
||||
|
||||
unique_data = {}
|
||||
for item in retrieved_old_memory: unique_data[item["id"]] = item
|
||||
for item in retrieved_old_memory:
|
||||
unique_data[item["id"]] = item
|
||||
retrieved_old_memory = list(unique_data.values())
|
||||
logging.info(f"Total existing memories: {len(retrieved_old_memory)}")
|
||||
temp_uuid_mapping = {}
|
||||
@@ -1180,35 +1180,45 @@ class AsyncMemory(MemoryBase):
|
||||
response_format={"type": "json_object"},
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error in new memory actions response: {e}"); response = ""
|
||||
|
||||
logging.error(f"Error in new memory actions response: {e}")
|
||||
response = ""
|
||||
|
||||
try:
|
||||
response = remove_code_blocks(response)
|
||||
new_memories_with_actions = json.loads(response)
|
||||
except Exception as e:
|
||||
logging.error(f"Invalid JSON response: {e}"); new_memories_with_actions = {}
|
||||
logging.error(f"Invalid JSON response: {e}")
|
||||
new_memories_with_actions = {}
|
||||
|
||||
returned_memories = []
|
||||
returned_memories = []
|
||||
try:
|
||||
memory_tasks = []
|
||||
for resp in new_memories_with_actions.get("memory", []):
|
||||
logging.info(resp)
|
||||
try:
|
||||
action_text = resp.get("text")
|
||||
if not action_text: continue
|
||||
if not action_text:
|
||||
continue
|
||||
event_type = resp.get("event")
|
||||
|
||||
if event_type == "ADD":
|
||||
task = asyncio.create_task(self._create_memory(
|
||||
data=action_text, existing_embeddings=new_message_embeddings,
|
||||
metadata=deepcopy(metadata)
|
||||
))
|
||||
task = asyncio.create_task(
|
||||
self._create_memory(
|
||||
data=action_text,
|
||||
existing_embeddings=new_message_embeddings,
|
||||
metadata=deepcopy(metadata),
|
||||
)
|
||||
)
|
||||
memory_tasks.append((task, resp, "ADD", None))
|
||||
elif event_type == "UPDATE":
|
||||
task = asyncio.create_task(self._update_memory(
|
||||
memory_id=temp_uuid_mapping[resp["id"]], data=action_text,
|
||||
existing_embeddings=new_message_embeddings, metadata=deepcopy(metadata)
|
||||
))
|
||||
task = asyncio.create_task(
|
||||
self._update_memory(
|
||||
memory_id=temp_uuid_mapping[resp["id"]],
|
||||
data=action_text,
|
||||
existing_embeddings=new_message_embeddings,
|
||||
metadata=deepcopy(metadata),
|
||||
)
|
||||
)
|
||||
memory_tasks.append((task, resp, "UPDATE", temp_uuid_mapping[resp["id"]]))
|
||||
elif event_type == "DELETE":
|
||||
task = asyncio.create_task(self._delete_memory(memory_id=temp_uuid_mapping[resp.get("id")]))
|
||||
@@ -1217,31 +1227,30 @@ class AsyncMemory(MemoryBase):
|
||||
logging.info("NOOP for Memory (async).")
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing memory action (async): {resp}, Error: {e}")
|
||||
|
||||
|
||||
for task, resp, event_type, mem_id in memory_tasks:
|
||||
try:
|
||||
result_id = await task
|
||||
if event_type == "ADD":
|
||||
returned_memories.append({
|
||||
"id": result_id, "memory": resp.get("text"), "event": event_type
|
||||
})
|
||||
returned_memories.append({"id": result_id, "memory": resp.get("text"), "event": event_type})
|
||||
elif event_type == "UPDATE":
|
||||
returned_memories.append({
|
||||
"id": mem_id, "memory": resp.get("text"),
|
||||
"event": event_type, "previous_memory": resp.get("old_memory")
|
||||
})
|
||||
returned_memories.append(
|
||||
{
|
||||
"id": mem_id,
|
||||
"memory": resp.get("text"),
|
||||
"event": event_type,
|
||||
"previous_memory": resp.get("old_memory"),
|
||||
}
|
||||
)
|
||||
elif event_type == "DELETE":
|
||||
returned_memories.append({
|
||||
"id": mem_id, "memory": resp.get("text"), "event": event_type
|
||||
})
|
||||
returned_memories.append({"id": mem_id, "memory": resp.get("text"), "event": event_type})
|
||||
except Exception as e:
|
||||
logging.error(f"Error awaiting memory task (async): {e}")
|
||||
except Exception as e:
|
||||
logging.error(f"Error in memory processing loop (async): {e}")
|
||||
|
||||
|
||||
capture_event(
|
||||
"mem0.add", self,
|
||||
{"version": self.api_version, "keys": list(filters.keys()), "sync_type": "async"}
|
||||
"mem0.add", self, {"version": self.api_version, "keys": list(filters.keys()), "sync_type": "async"}
|
||||
)
|
||||
return returned_memories
|
||||
|
||||
@@ -1272,17 +1281,14 @@ class AsyncMemory(MemoryBase):
|
||||
return None
|
||||
|
||||
promoted_payload_keys = [
|
||||
"user_id",
|
||||
"agent_id",
|
||||
"run_id",
|
||||
"user_id",
|
||||
"agent_id",
|
||||
"run_id",
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
result_item = MemoryItem(
|
||||
id=memory.id,
|
||||
@@ -1295,18 +1301,16 @@ class AsyncMemory(MemoryBase):
|
||||
for key in promoted_payload_keys:
|
||||
if key in memory.payload:
|
||||
result_item[key] = memory.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
result_item["metadata"] = additional_metadata
|
||||
|
||||
|
||||
return result_item
|
||||
|
||||
async def get_all(
|
||||
self,
|
||||
*,
|
||||
*,
|
||||
user_id: Optional[str] = None,
|
||||
agent_id: Optional[str] = None,
|
||||
run_id: Optional[str] = None,
|
||||
@@ -1314,41 +1318,36 @@ class AsyncMemory(MemoryBase):
|
||||
limit: int = 100,
|
||||
):
|
||||
"""
|
||||
List all memories.
|
||||
List all memories.
|
||||
|
||||
Args:
|
||||
user_id (str, optional): user id
|
||||
agent_id (str, optional): agent id
|
||||
run_id (str, optional): run id
|
||||
filters (dict, optional): Additional custom key-value filters to apply to the search.
|
||||
These are merged with the ID-based scoping filters. For example,
|
||||
`filters={"actor_id": "some_user"}`.
|
||||
limit (int, optional): The maximum number of memories to return. Defaults to 100.
|
||||
Args:
|
||||
user_id (str, optional): user id
|
||||
agent_id (str, optional): agent id
|
||||
run_id (str, optional): run id
|
||||
filters (dict, optional): Additional custom key-value filters to apply to the search.
|
||||
These are merged with the ID-based scoping filters. For example,
|
||||
`filters={"actor_id": "some_user"}`.
|
||||
limit (int, optional): The maximum number of memories to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing a list of memories under the "results" key,
|
||||
and potentially "relations" if graph store is enabled. For API v1.0,
|
||||
it might return a direct list (see deprecation warning).
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", ...}]}`
|
||||
Returns:
|
||||
dict: A dictionary containing a list of memories under the "results" key,
|
||||
and potentially "relations" if graph store is enabled. For API v1.0,
|
||||
it might return a direct list (see deprecation warning).
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", ...}]}`
|
||||
"""
|
||||
|
||||
|
||||
_, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_filters=filters
|
||||
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
||||
)
|
||||
|
||||
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
||||
raise ValueError(
|
||||
"When 'conversation_id' is not provided (classic mode), "
|
||||
"at least one of 'user_id', 'agent_id', or 'run_id' must be specified for get_all."
|
||||
)
|
||||
raise ValueError(
|
||||
"When 'conversation_id' is not provided (classic mode), "
|
||||
"at least one of 'user_id', 'agent_id', or 'run_id' must be specified for get_all."
|
||||
)
|
||||
|
||||
capture_event(
|
||||
"mem0.get_all",
|
||||
self,
|
||||
{"limit": limit, "keys": list(effective_filters.keys()), "sync_type": "async"}
|
||||
"mem0.get_all", self, {"limit": limit, "keys": list(effective_filters.keys()), "sync_type": "async"}
|
||||
)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
@@ -1361,9 +1360,9 @@ class AsyncMemory(MemoryBase):
|
||||
[future_memories, future_graph_entities] if future_graph_entities else [future_memories]
|
||||
)
|
||||
|
||||
all_memories_result = future_memories.result()
|
||||
all_memories_result = future_memories.result()
|
||||
graph_entities_result = future_graph_entities.result() if future_graph_entities else None
|
||||
|
||||
|
||||
if self.enable_graph:
|
||||
return {"results": all_memories_result, "relations": graph_entities_result}
|
||||
|
||||
@@ -1381,20 +1380,21 @@ class AsyncMemory(MemoryBase):
|
||||
|
||||
async def _get_all_from_vector_store(self, filters, limit):
|
||||
memories_result = await asyncio.to_thread(self.vector_store.list, filters=filters, limit=limit)
|
||||
actual_memories = memories_result[0] if isinstance(memories_result, tuple) and len(memories_result) > 0 else memories_result
|
||||
actual_memories = (
|
||||
memories_result[0] if isinstance(memories_result, tuple) and len(memories_result) > 0 else memories_result
|
||||
)
|
||||
|
||||
promoted_payload_keys = [
|
||||
"user_id", "agent_id", "run_id",
|
||||
"user_id",
|
||||
"agent_id",
|
||||
"run_id",
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
formatted_memories = []
|
||||
for mem in actual_memories:
|
||||
for mem in actual_memories:
|
||||
memory_item_dict = MemoryItem(
|
||||
id=mem.id,
|
||||
memory=mem.payload["data"],
|
||||
@@ -1406,15 +1406,13 @@ class AsyncMemory(MemoryBase):
|
||||
for key in promoted_payload_keys:
|
||||
if key in mem.payload:
|
||||
memory_item_dict[key] = mem.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
memory_item_dict["metadata"] = additional_metadata
|
||||
|
||||
|
||||
formatted_memories.append(memory_item_dict)
|
||||
|
||||
|
||||
return formatted_memories
|
||||
|
||||
async def search(
|
||||
@@ -1442,16 +1440,13 @@ class AsyncMemory(MemoryBase):
|
||||
and potentially "relations" if graph store is enabled.
|
||||
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "score": 0.8, ...}]}`
|
||||
"""
|
||||
|
||||
|
||||
_, effective_filters = _build_filters_and_metadata(
|
||||
user_id=user_id,
|
||||
agent_id=agent_id,
|
||||
run_id=run_id,
|
||||
input_filters=filters
|
||||
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
||||
)
|
||||
|
||||
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
||||
raise ValueError("at least one of 'user_id', 'agent_id', or 'run_id' must be specified ")
|
||||
raise ValueError("at least one of 'user_id', 'agent_id', or 'run_id' must be specified ")
|
||||
|
||||
capture_event(
|
||||
"mem0.search",
|
||||
@@ -1460,22 +1455,20 @@ class AsyncMemory(MemoryBase):
|
||||
)
|
||||
|
||||
vector_store_task = asyncio.create_task(self._search_vector_store(query, effective_filters, limit))
|
||||
|
||||
|
||||
graph_task = None
|
||||
if self.enable_graph:
|
||||
if hasattr(self.graph.search, "__await__"): # Check if graph search is async
|
||||
graph_task = asyncio.create_task(self.graph.search(query, effective_filters, limit))
|
||||
else:
|
||||
graph_task = asyncio.create_task(
|
||||
asyncio.to_thread(self.graph.search, query, effective_filters, limit)
|
||||
)
|
||||
|
||||
graph_task = asyncio.create_task(asyncio.to_thread(self.graph.search, query, effective_filters, limit))
|
||||
|
||||
if graph_task:
|
||||
original_memories, graph_entities = await asyncio.gather(vector_store_task, graph_task)
|
||||
else:
|
||||
original_memories = await vector_store_task
|
||||
graph_entities = None
|
||||
|
||||
|
||||
if self.enable_graph:
|
||||
return {"results": original_memories, "relations": graph_entities}
|
||||
|
||||
@@ -1504,11 +1497,8 @@ class AsyncMemory(MemoryBase):
|
||||
"actor_id",
|
||||
"role",
|
||||
]
|
||||
|
||||
core_and_promoted_keys = {
|
||||
"data", "hash", "created_at", "updated_at", "id",
|
||||
*promoted_payload_keys
|
||||
}
|
||||
|
||||
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
||||
|
||||
original_memories = []
|
||||
for mem in memories:
|
||||
@@ -1518,19 +1508,17 @@ class AsyncMemory(MemoryBase):
|
||||
hash=mem.payload.get("hash"),
|
||||
created_at=mem.payload.get("created_at"),
|
||||
updated_at=mem.payload.get("updated_at"),
|
||||
score=mem.score,
|
||||
).model_dump()
|
||||
score=mem.score,
|
||||
).model_dump()
|
||||
|
||||
for key in promoted_payload_keys:
|
||||
if key in mem.payload:
|
||||
memory_item_dict[key] = mem.payload[key]
|
||||
|
||||
additional_metadata = {
|
||||
k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys
|
||||
}
|
||||
|
||||
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
||||
if additional_metadata:
|
||||
memory_item_dict["metadata"] = additional_metadata
|
||||
|
||||
|
||||
original_memories.append(memory_item_dict)
|
||||
|
||||
return original_memories
|
||||
@@ -1650,7 +1638,7 @@ class AsyncMemory(MemoryBase):
|
||||
capture_event("mem0._create_memory", self, {"memory_id": memory_id, "sync_type": "async"})
|
||||
return memory_id
|
||||
|
||||
async def _create_procedural_memory(self, messages, metadata=None,llm=None ,prompt=None):
|
||||
async def _create_procedural_memory(self, messages, metadata=None, llm=None, prompt=None):
|
||||
"""
|
||||
Create a procedural memory asynchronously
|
||||
|
||||
@@ -1709,11 +1697,11 @@ class AsyncMemory(MemoryBase):
|
||||
except Exception:
|
||||
logger.error(f"Error getting memory with ID {memory_id} during update.")
|
||||
raise ValueError(f"Error getting memory with ID {memory_id}. Please provide a valid 'memory_id'")
|
||||
|
||||
|
||||
prev_value = existing_memory.payload.get("data")
|
||||
|
||||
new_metadata = deepcopy(metadata) if metadata is not None else {}
|
||||
|
||||
|
||||
new_metadata["data"] = data
|
||||
new_metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
||||
new_metadata["created_at"] = existing_memory.payload.get("created_at")
|
||||
@@ -1725,8 +1713,7 @@ class AsyncMemory(MemoryBase):
|
||||
new_metadata["agent_id"] = existing_memory.payload["agent_id"]
|
||||
if "run_id" in existing_memory.payload:
|
||||
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
||||
|
||||
|
||||
|
||||
if "actor_id" in existing_memory.payload:
|
||||
new_metadata["actor_id"] = existing_memory.payload["actor_id"]
|
||||
if "role" in existing_memory.payload:
|
||||
@@ -1736,7 +1723,7 @@ class AsyncMemory(MemoryBase):
|
||||
embeddings = existing_embeddings[data]
|
||||
else:
|
||||
embeddings = await asyncio.to_thread(self.embedding_model.embed, data, "update")
|
||||
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.vector_store.update,
|
||||
vector_id=memory_id,
|
||||
@@ -1744,7 +1731,7 @@ class AsyncMemory(MemoryBase):
|
||||
payload=new_metadata,
|
||||
)
|
||||
logger.info(f"Updating memory with ID {memory_id=} with {data=}")
|
||||
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.db.add_history,
|
||||
memory_id,
|
||||
|
||||
@@ -5,16 +5,12 @@ from mem0.memory.utils import format_entities
|
||||
try:
|
||||
from langchain_memgraph import Memgraph
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"langchain_memgraph is not installed. Please install it using pip install langchain-memgraph"
|
||||
)
|
||||
raise ImportError("langchain_memgraph is not installed. Please install it using pip install langchain-memgraph")
|
||||
|
||||
try:
|
||||
from rank_bm25 import BM25Okapi
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"rank_bm25 is not installed. Please install it using pip install rank-bm25"
|
||||
)
|
||||
raise ImportError("rank_bm25 is not installed. Please install it using pip install rank-bm25")
|
||||
|
||||
from mem0.graphs.tools import (
|
||||
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
|
||||
@@ -74,22 +70,14 @@ class MemoryGraph:
|
||||
filters (dict): A dictionary containing filters to be applied during the addition.
|
||||
"""
|
||||
entity_type_map = self._retrieve_nodes_from_data(data, filters)
|
||||
to_be_added = self._establish_nodes_relations_from_data(
|
||||
data, filters, entity_type_map
|
||||
)
|
||||
search_output = self._search_graph_db(
|
||||
node_list=list(entity_type_map.keys()), filters=filters
|
||||
)
|
||||
to_be_deleted = self._get_delete_entities_from_search_output(
|
||||
search_output, data, filters
|
||||
)
|
||||
to_be_added = self._establish_nodes_relations_from_data(data, filters, entity_type_map)
|
||||
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
|
||||
to_be_deleted = self._get_delete_entities_from_search_output(search_output, data, filters)
|
||||
|
||||
# TODO: Batch queries with APOC plugin
|
||||
# TODO: Add more filter support
|
||||
deleted_entities = self._delete_entities(to_be_deleted, filters["user_id"])
|
||||
added_entities = self._add_entities(
|
||||
to_be_added, filters["user_id"], entity_type_map
|
||||
)
|
||||
added_entities = self._add_entities(to_be_added, filters["user_id"], entity_type_map)
|
||||
|
||||
return {"deleted_entities": deleted_entities, "added_entities": added_entities}
|
||||
|
||||
@@ -108,16 +96,13 @@ class MemoryGraph:
|
||||
- "entities": List of related graph data based on the query.
|
||||
"""
|
||||
entity_type_map = self._retrieve_nodes_from_data(query, filters)
|
||||
search_output = self._search_graph_db(
|
||||
node_list=list(entity_type_map.keys()), filters=filters
|
||||
)
|
||||
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
|
||||
|
||||
if not search_output:
|
||||
return []
|
||||
|
||||
search_outputs_sequence = [
|
||||
[item["source"], item["relationship"], item["destination"]]
|
||||
for item in search_output
|
||||
[item["source"], item["relationship"], item["destination"]] for item in search_output
|
||||
]
|
||||
bm25 = BM25Okapi(search_outputs_sequence)
|
||||
|
||||
@@ -126,9 +111,7 @@ class MemoryGraph:
|
||||
|
||||
search_results = []
|
||||
for item in reranked_results:
|
||||
search_results.append(
|
||||
{"source": item[0], "relationship": item[1], "destination": item[2]}
|
||||
)
|
||||
search_results.append({"source": item[0], "relationship": item[1], "destination": item[2]})
|
||||
|
||||
logger.info(f"Returned {len(search_results)} search results")
|
||||
|
||||
@@ -161,9 +144,7 @@ class MemoryGraph:
|
||||
RETURN n.name AS source, type(r) AS relationship, m.name AS target
|
||||
LIMIT $limit
|
||||
"""
|
||||
results = self.graph.query(
|
||||
query, params={"user_id": filters["user_id"], "limit": limit}
|
||||
)
|
||||
results = self.graph.query(query, params={"user_id": filters["user_id"], "limit": limit})
|
||||
|
||||
final_results = []
|
||||
for result in results:
|
||||
@@ -208,13 +189,8 @@ class MemoryGraph:
|
||||
f"Error in search tool: {e}, llm_provider={self.llm_provider}, search_results={search_results}"
|
||||
)
|
||||
|
||||
entity_type_map = {
|
||||
k.lower().replace(" ", "_"): v.lower().replace(" ", "_")
|
||||
for k, v in entity_type_map.items()
|
||||
}
|
||||
logger.debug(
|
||||
f"Entity type map: {entity_type_map}\n search_results={search_results}"
|
||||
)
|
||||
entity_type_map = {k.lower().replace(" ", "_"): v.lower().replace(" ", "_") for k, v in entity_type_map.items()}
|
||||
logger.debug(f"Entity type map: {entity_type_map}\n search_results={search_results}")
|
||||
return entity_type_map
|
||||
|
||||
def _establish_nodes_relations_from_data(self, data, filters, entity_type_map):
|
||||
@@ -223,9 +199,7 @@ class MemoryGraph:
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace(
|
||||
"USER_ID", filters["user_id"]
|
||||
).replace(
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]).replace(
|
||||
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
|
||||
),
|
||||
},
|
||||
@@ -235,9 +209,7 @@ class MemoryGraph:
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace(
|
||||
"USER_ID", filters["user_id"]
|
||||
),
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]),
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
@@ -304,9 +276,7 @@ class MemoryGraph:
|
||||
def _get_delete_entities_from_search_output(self, search_output, data, filters):
|
||||
"""Get the entities to be deleted from the search output."""
|
||||
search_output_string = format_entities(search_output)
|
||||
system_prompt, user_prompt = get_delete_messages(
|
||||
search_output_string, data, filters["user_id"]
|
||||
)
|
||||
system_prompt, user_prompt = get_delete_messages(search_output_string, data, filters["user_id"])
|
||||
|
||||
_tools = [DELETE_MEMORY_TOOL_GRAPH]
|
||||
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
|
||||
@@ -379,12 +349,8 @@ class MemoryGraph:
|
||||
# search for the nodes with the closest embeddings; this is basically
|
||||
# comparison of one embedding to all embeddings in a graph -> vector
|
||||
# search with cosine similarity metric
|
||||
source_node_search_result = self._search_source_node(
|
||||
source_embedding, user_id, threshold=0.9
|
||||
)
|
||||
destination_node_search_result = self._search_destination_node(
|
||||
dest_embedding, user_id, threshold=0.9
|
||||
)
|
||||
source_node_search_result = self._search_source_node(source_embedding, user_id, threshold=0.9)
|
||||
destination_node_search_result = self._search_destination_node(dest_embedding, user_id, threshold=0.9)
|
||||
|
||||
# TODO: Create a cypher query and common params for all the cases
|
||||
if not destination_node_search_result and source_node_search_result:
|
||||
@@ -424,9 +390,7 @@ class MemoryGraph:
|
||||
"""
|
||||
|
||||
params = {
|
||||
"destination_id": destination_node_search_result[0][
|
||||
"id(destination_candidate)"
|
||||
],
|
||||
"destination_id": destination_node_search_result[0]["id(destination_candidate)"],
|
||||
"source_name": source,
|
||||
"source_embedding": source_embedding,
|
||||
"user_id": user_id,
|
||||
@@ -445,9 +409,7 @@ class MemoryGraph:
|
||||
"""
|
||||
params = {
|
||||
"source_id": source_node_search_result[0]["id(source_candidate)"],
|
||||
"destination_id": destination_node_search_result[0][
|
||||
"id(destination_candidate)"
|
||||
],
|
||||
"destination_id": destination_node_search_result[0]["id(destination_candidate)"],
|
||||
"user_id": user_id,
|
||||
}
|
||||
else:
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import logging
|
||||
import sqlite3
|
||||
import threading
|
||||
import uuid
|
||||
import logging
|
||||
from typing import List, Dict, Any, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -23,9 +23,7 @@ class SQLiteManager:
|
||||
"""
|
||||
with self._lock, self.connection:
|
||||
cur = self.connection.cursor()
|
||||
cur.execute(
|
||||
"SELECT name FROM sqlite_master WHERE type='table' AND name='history'"
|
||||
)
|
||||
cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='history'")
|
||||
if cur.fetchone() is None:
|
||||
return # nothing to migrate
|
||||
|
||||
@@ -51,13 +49,11 @@ class SQLiteManager:
|
||||
logger.info("Migrating history table to new schema (no convo columns).")
|
||||
cur.execute("ALTER TABLE history RENAME TO history_old")
|
||||
|
||||
self._create_history_table()
|
||||
self._create_history_table()
|
||||
|
||||
intersecting = list(expected_cols & old_cols)
|
||||
cols_csv = ", ".join(intersecting)
|
||||
cur.execute(
|
||||
f"INSERT INTO history ({cols_csv}) SELECT {cols_csv} FROM history_old"
|
||||
)
|
||||
cur.execute(f"INSERT INTO history ({cols_csv}) SELECT {cols_csv} FROM history_old")
|
||||
cur.execute("DROP TABLE history_old")
|
||||
|
||||
def _create_history_table(self) -> None:
|
||||
|
||||
@@ -9,8 +9,8 @@ import mem0
|
||||
from mem0.memory.setup import get_or_create_user_id
|
||||
|
||||
MEM0_TELEMETRY = os.environ.get("MEM0_TELEMETRY", "True")
|
||||
PROJECT_API_KEY="phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"
|
||||
HOST="https://us.i.posthog.com"
|
||||
PROJECT_API_KEY = "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"
|
||||
HOST = "https://us.i.posthog.com"
|
||||
|
||||
if isinstance(MEM0_TELEMETRY, str):
|
||||
MEM0_TELEMETRY = MEM0_TELEMETRY.lower() in ("true", "1", "yes")
|
||||
|
||||
Reference in New Issue
Block a user