Formatting (#2750)

This commit is contained in:
Dev Khant
2025-05-22 01:17:29 +05:30
committed by GitHub
parent dff91154a7
commit d85fcda037
71 changed files with 1391 additions and 1823 deletions

View File

@@ -59,23 +59,19 @@ class OpenAIPredict:
self.results = defaultdict(list)
def search_memory(self, idx):
with open(f'memories/{idx}.txt', 'r') as file:
with open(f"memories/{idx}.txt", "r") as file:
memories = file.read()
return memories, 0
def process_question(self, val, idx):
question = val.get('question', '')
answer = val.get('answer', '')
category = val.get('category', -1)
evidence = val.get('evidence', [])
adversarial_answer = val.get('adversarial_answer', '')
question = val.get("question", "")
answer = val.get("answer", "")
category = val.get("category", -1)
evidence = val.get("evidence", [])
adversarial_answer = val.get("adversarial_answer", "")
response, search_memory_time, response_time, context = self.answer_question(
idx,
question
)
response, search_memory_time, response_time, context = self.answer_question(idx, question)
result = {
"question": question,
@@ -86,7 +82,7 @@ class OpenAIPredict:
"adversarial_answer": adversarial_answer,
"search_memory_time": search_memory_time,
"response_time": response_time,
"context": context
"context": context,
}
return result
@@ -95,43 +91,35 @@ class OpenAIPredict:
memories, search_memory_time = self.search_memory(idx)
template = Template(ANSWER_PROMPT)
answer_prompt = template.render(
memories=memories,
question=question
)
answer_prompt = template.render(memories=memories, question=question)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[
{"role": "system", "content": answer_prompt}
],
temperature=0.0
model=os.getenv("MODEL"), messages=[{"role": "system", "content": answer_prompt}], temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, search_memory_time, response_time, memories
def process_data_file(self, file_path, output_file_path):
with open(file_path, 'r') as f:
with open(file_path, "r") as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item['qa']
qa = item["qa"]
for question_item in tqdm(qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False):
result = self.process_question(
question_item,
idx
)
for question_item in tqdm(
qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False
):
result = self.process_question(question_item, idx)
self.results[idx].append(result)
# Save results after each question is processed
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
@@ -141,4 +129,3 @@ if __name__ == "__main__":
args = parser.parse_args()
openai_predict = OpenAIPredict()
openai_predict.process_data_file("../../dataset/locomo10.json", args.output_file_path)