Formatting (#2750)

This commit is contained in:
Dev Khant
2025-05-22 01:17:29 +05:30
committed by GitHub
parent dff91154a7
commit d85fcda037
71 changed files with 1391 additions and 1823 deletions

View File

@@ -3,7 +3,7 @@ import json
import pandas as pd
# Load the evaluation metrics data
with open('evaluation_metrics.json', 'r') as f:
with open("evaluation_metrics.json", "r") as f:
data = json.load(f)
# Flatten the data into a list of question items
@@ -15,28 +15,20 @@ for key in data:
df = pd.DataFrame(all_items)
# Convert category to numeric type
df['category'] = pd.to_numeric(df['category'])
df["category"] = pd.to_numeric(df["category"])
# Calculate mean scores by category
result = df.groupby('category').agg({
'bleu_score': 'mean',
'f1_score': 'mean',
'llm_score': 'mean'
}).round(4)
result = df.groupby("category").agg({"bleu_score": "mean", "f1_score": "mean", "llm_score": "mean"}).round(4)
# Add count of questions per category
result['count'] = df.groupby('category').size()
result["count"] = df.groupby("category").size()
# Print the results
print("Mean Scores Per Category:")
print(result)
# Calculate overall means
overall_means = df.agg({
'bleu_score': 'mean',
'f1_score': 'mean',
'llm_score': 'mean'
}).round(4)
overall_means = df.agg({"bleu_score": "mean", "f1_score": "mean", "llm_score": "mean"}).round(4)
print("\nOverall Mean Scores:")
print(overall_means)
print(overall_means)