feature: Add support for zilliz vector database (#771)

This commit is contained in:
LuciAkirami
2023-10-12 01:47:33 +05:30
committed by GitHub
parent 16e123b7bb
commit d6ed2050d4
7 changed files with 438 additions and 0 deletions

View File

@@ -18,6 +18,9 @@ install_es:
install_opensearch:
poetry install --extras opensearch
install_milvus:
poetry install --extras milvus
shell:
poetry shell

View File

@@ -12,3 +12,4 @@ from .llm.base_llm_config import BaseLlmConfig as LlmConfig
from .vectordb.chroma import ChromaDbConfig
from .vectordb.elasticsearch import ElasticsearchDBConfig
from .vectordb.opensearch import OpenSearchDBConfig
from .vectordb.zilliz import ZillizDBConfig

View File

@@ -0,0 +1,49 @@
import os
from typing import Optional
from embedchain.config.vectordb.base import BaseVectorDbConfig
from embedchain.helper.json_serializable import register_deserializable
@register_deserializable
class ZillizDBConfig(BaseVectorDbConfig):
def __init__(
self,
collection_name: Optional[str] = None,
dir: Optional[str] = None,
uri: Optional[str] = None,
token: Optional[str] = None,
vector_dim: Optional[str] = None,
metric_type: Optional[str] = None,
):
"""
Initializes a configuration class instance for the vector database.
:param collection_name: Default name for the collection, defaults to None
:type collection_name: Optional[str], optional
:param dir: Path to the database directory, where the database is stored, defaults to "db"
:type dir: str, optional
:param uri: Cluster endpoint obtained from the Zilliz Console, defaults to None
:type uri: Optional[str], optional
:param token: API Key, if a Serverless Cluster, username:password, if a Dedicated Cluster, defaults to None
:type port: Optional[str], optional
"""
self.uri = uri or os.environ.get("ZILLIZ_CLOUD_URI")
if not self.uri:
raise AttributeError(
"Zilliz needs a URI attribute, "
"this can either be passed to `ZILLIZ_CLOUD_URI` or as `ZILLIZ_CLOUD_URI` in `.env`"
)
self.token = token or os.environ.get("ZILLIZ_CLOUD_TOKEN")
if not self.token:
raise AttributeError(
"Zilliz needs a token attribute, "
"this can either be passed to `ZILLIZ_CLOUD_TOKEN` or as `ZILLIZ_CLOUD_TOKEN` in `.env`,"
"if having a username and password, pass it in the form 'username:password' to `ZILLIZ_CLOUD_TOKEN`"
)
self.metric_type = metric_type if metric_type else "L2"
self.vector_dim = vector_dim
super().__init__(collection_name=collection_name, dir=dir)

View File

@@ -5,3 +5,4 @@ class VectorDatabases(Enum):
CHROMADB = "CHROMADB"
ELASTICSEARCH = "ELASTICSEARCH"
OPENSEARCH = "OPENSEARCH"
ZILLIZ = "ZILLIZ"

View File

@@ -0,0 +1,205 @@
from typing import Dict, List, Optional
from embedchain.config import ZillizDBConfig
from embedchain.helper.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
try:
from pymilvus import MilvusClient
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
except ImportError:
raise ImportError(
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
) from None
@register_deserializable
class ZillizVectorDB(BaseVectorDB):
"""Base class for vector database."""
def __init__(self, config: ZillizDBConfig = None):
"""Initialize the database. Save the config and client as an attribute.
:param config: Database configuration class instance.
:type config: ZillizDBConfig
"""
if config is None:
self.config = ZillizDBConfig()
else:
self.config = config
self.client = MilvusClient(
uri=self.config.uri,
token=self.config.token,
)
self.connection = connections.connect(
uri=self.config.uri,
token=self.config.token,
)
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
So it's can't be done in __init__ in one step.
"""
self._get_or_create_collection(self.config.collection_name)
def _get_or_create_db(self):
"""Get or create the database."""
return self.client
def _get_or_create_collection(self, name):
"""
Get or create a named collection.
:param name: Name of the collection
:type name: str
"""
if utility.has_collection(name):
self.collection = Collection(name)
else:
fields = [
FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=512),
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=2048),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=self.embedder.vector_dimension),
]
schema = CollectionSchema(fields, enable_dynamic_field=True)
self.collection = Collection(name=name, schema=schema)
index = {
"index_type": "AUTOINDEX",
"metric_type": self.config.metric_type,
}
self.collection.create_index("embeddings", index)
return self.collection
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existence
:type ids: List[str]
:param where: Optional. to filter data
:type where: Dict[str, Any]
:param limit: Optional. maximum number of documents
:type limit: Optional[int]
:return: Existing documents.
:rtype: Set[str]
"""
if ids is None or len(ids) == 0 or self.collection.num_entities == 0:
return {"ids": []}
if not (self.collection.is_empty):
filter = f"id in {ids}"
results = self.client.query(
collection_name=self.config.collection_name, filter=filter, output_fields=["id"]
)
results = [res["id"] for res in results]
return {"ids": set(results)}
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
skip_embedding: bool,
):
"""Add to database"""
if not skip_embedding:
embeddings = self.embedder.embedding_fn(documents)
for id, doc, metadata, embedding in zip(ids, documents, metadatas, embeddings):
data = {**metadata, "id": id, "text": doc, "embeddings": embedding}
self.client.insert(collection_name=self.config.collection_name, data=data)
self.collection.load()
self.collection.flush()
self.client.flush(self.config.collection_name)
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
"""
Query contents from vector data base based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: to filter data
:type where: str
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query.
:rtype: List[str]
"""
if self.collection.is_empty:
return []
if not isinstance(where, str):
where = None
if skip_embedding:
query_vector = input_query
query_result = self.client.search(
collection_name=self.config.collection_name,
data=query_vector,
limit=n_results,
output_fields=["text"],
)
else:
input_query_vector = self.embedder.embedding_fn([input_query])
query_vector = input_query_vector[0]
query_result = self.client.search(
collection_name=self.config.collection_name,
data=[query_vector],
limit=n_results,
output_fields=["text"],
)
doc_list = []
for query in query_result:
doc_list.append(query[0]["entity"]["text"])
return doc_list
def count(self) -> int:
"""
Count number of documents/chunks embedded in the database.
:return: number of documents
:rtype: int
"""
return self.collection.num_entities
def reset(self, collection_names: List[str] = None):
"""
Resets the database. Deletes all embeddings irreversibly.
"""
if self.config.collection_name:
if collection_names:
for collection_name in collection_names:
if collection_name in self.client.list_collections():
self.client.drop_collection(collection_name=collection_name)
else:
self.client.drop_collection(collection_name=self.config.collection_name)
self._get_or_create_collection(self.config.collection_name)
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name

View File

@@ -113,6 +113,7 @@ torchvision = { version = ">=0.15.1, !=0.15.2", optional = true }
ftfy = { version = "6.1.1", optional = true }
regex = { version = "2023.8.8", optional = true }
huggingface_hub = { version = "^0.17.3", optional = true }
pymilvus = "2.3.1"
[tool.poetry.group.dev.dependencies]
black = "^23.3.0"
@@ -139,6 +140,7 @@ whatsapp = ["twilio", "flask"]
images = ["torch", "ftfy", "regex", "pillow", "torchvision"]
huggingface_hub=["huggingface_hub"]
cohere = ["cohere"]
milvus = ["pymilvus"]
[tool.poetry.group.docs.dependencies]

View File

@@ -0,0 +1,177 @@
# ruff: noqa: E501
import os
import pytest
from unittest import mock
from unittest.mock import patch, Mock
from embedchain.config import ZillizDBConfig
from embedchain.vectordb.zilliz import ZillizVectorDB
# to run tests, provide the URI and TOKEN in .env file
class TestZillizVectorDBConfig:
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def test_init_with_uri_and_token(self):
"""
Test if the `ZillizVectorDBConfig` instance is initialized with the correct uri and token values.
"""
# Create a ZillizDBConfig instance with mocked values
expected_uri = "mocked_uri"
expected_token = "mocked_token"
db_config = ZillizDBConfig()
# Assert that the values in the ZillizVectorDB instance match the mocked values
assert db_config.uri == expected_uri
assert db_config.token == expected_token
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def test_init_without_uri(self):
"""
Test if the `ZillizVectorDBConfig` instance throws an error when no URI found.
"""
try:
del os.environ["ZILLIZ_CLOUD_URI"]
except KeyError:
pass
with pytest.raises(AttributeError):
ZillizDBConfig()
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def test_init_without_token(self):
"""
Test if the `ZillizVectorDBConfig` instance throws an error when no Token found.
"""
try:
del os.environ["ZILLIZ_CLOUD_TOKEN"]
except KeyError:
pass
# Test if an exception is raised when ZILLIZ_CLOUD_TOKEN is missing
with pytest.raises(AttributeError):
ZillizDBConfig()
class TestZillizVectorDB:
@pytest.fixture
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def mock_config(self, mocker):
return mocker.Mock(spec=ZillizDBConfig())
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
@patch("embedchain.vectordb.zilliz.connections.connect", autospec=True)
def test_zilliz_vector_db_setup(self, mock_connect, mock_client, mock_config):
"""
Test if the `ZillizVectorDB` instance is initialized with the correct uri and token values.
"""
# Create an instance of ZillizVectorDB with the mock config
# zilliz_db = ZillizVectorDB(config=mock_config)
ZillizVectorDB(config=mock_config)
# Assert that the MilvusClient and connections.connect were called
mock_client.assert_called_once_with(uri=mock_config.uri, token=mock_config.token)
mock_connect.assert_called_once_with(uri=mock_config.uri, token=mock_config.token)
class TestZillizDBCollection:
@pytest.fixture
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def mock_config(self, mocker):
return mocker.Mock(spec=ZillizDBConfig())
@pytest.fixture
def mock_embedder(self, mocker):
return mocker.Mock()
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def test_init_with_default_collection(self):
"""
Test if the `ZillizVectorDB` instance is initialized with the correct default collection name.
"""
# Create a ZillizDBConfig instance
db_config = ZillizDBConfig()
assert db_config.collection_name == "embedchain_store"
@mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
def test_init_with_custom_collection(self):
"""
Test if the `ZillizVectorDB` instance is initialized with the correct custom collection name.
"""
# Create a ZillizDBConfig instance with mocked values
expected_collection = "test_collection"
db_config = ZillizDBConfig(collection_name="test_collection")
assert db_config.collection_name == expected_collection
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
def test_query_with_skip_embedding(self, mock_connect, mock_client, mock_config):
"""
Test if the `ZillizVectorDB` instance is takes in the query with skip_embeddings.
"""
# Create an instance of ZillizVectorDB with mock config
zilliz_db = ZillizVectorDB(config=mock_config)
# Add a 'collection' attribute to the ZillizVectorDB instance for testing
zilliz_db.collection = Mock(is_empty=False) # Mock the 'collection' object
assert zilliz_db.client == mock_client()
# Mock the MilvusClient search method
with patch.object(zilliz_db.client, "search") as mock_search:
# Mock the search result
mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
# Call the query method with skip_embedding=True
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=True)
# Assert that MilvusClient.search was called with the correct parameters
mock_search.assert_called_once_with(
collection_name=mock_config.collection_name,
data=["query_text"],
limit=1,
output_fields=["text"],
)
# Assert that the query result matches the expected result
assert query_result == ["result_doc"]
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
def test_query_without_skip_embedding(self, mock_connect, mock_client, mock_embedder, mock_config):
"""
Test if the `ZillizVectorDB` instance is takes in the query without skip_embeddings.
"""
# Create an instance of ZillizVectorDB with mock config
zilliz_db = ZillizVectorDB(config=mock_config)
# Add a 'embedder' attribute to the ZillizVectorDB instance for testing
zilliz_db.embedder = mock_embedder # Mock the 'collection' object
# Add a 'collection' attribute to the ZillizVectorDB instance for testing
zilliz_db.collection = Mock(is_empty=False) # Mock the 'collection' object
assert zilliz_db.client == mock_client()
# Mock the MilvusClient search method
with patch.object(zilliz_db.client, "search") as mock_search:
# Mock the embedding function
mock_embedder.embedding_fn.return_value = ["query_vector"]
# Mock the search result
mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
# Call the query method with skip_embedding=False
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=False)
# Assert that MilvusClient.search was called with the correct parameters
mock_search.assert_called_once_with(
collection_name=mock_config.collection_name,
data=["query_vector"],
limit=1,
output_fields=["text"],
)
# Assert that the query result matches the expected result
assert query_result == ["result_doc"]