diff --git a/docs/docs.json b/docs/docs.json
index 80faa1c9..71b1f0b0 100644
--- a/docs/docs.json
+++ b/docs/docs.json
@@ -252,6 +252,7 @@
"integrations/agno",
"integrations/autogen",
"integrations/crewai",
+ "integrations/openai-agents-sdk",
"integrations/mastra",
"integrations/vercel-ai-sdk",
"integrations/livekit",
diff --git a/docs/integrations/openai-agents-sdk.mdx b/docs/integrations/openai-agents-sdk.mdx
new file mode 100644
index 00000000..6b9a3e48
--- /dev/null
+++ b/docs/integrations/openai-agents-sdk.mdx
@@ -0,0 +1,234 @@
+---
+title: OpenAI Agents SDK
+---
+
+
+
+Integrate [**Mem0**](https://github.com/mem0ai/mem0) with [OpenAI Agents SDK](https://github.com/openai/openai-agents-python), a lightweight framework for building multi-agent workflows. This integration enables agents to access persistent memory across conversations, enhancing context retention and personalization.
+
+## Overview
+
+1. Store and retrieve memories from Mem0 within OpenAI agents
+2. Multi-agent workflows with shared memory
+3. Semantic search for relevant past conversations
+4. Personalized responses based on user history
+
+## Prerequisites
+
+Before setting up Mem0 with OpenAI Agents SDK, ensure you have:
+
+1. Installed the required packages:
+```bash
+pip install openai-agents mem0ai
+```
+
+2. Valid API keys:
+ - [Mem0 API Key](https://app.mem0.ai/dashboard/api-keys)
+ - [OpenAI API Key](https://platform.openai.com/api-keys)
+
+## Basic Integration Example
+
+The following example demonstrates how to create an OpenAI agent with Mem0 memory integration:
+
+```python
+import os
+from agents import Agent, Runner, function_tool
+from mem0 import MemoryClient
+
+# Set up environment variables
+os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
+os.environ["MEM0_API_KEY"] = "your-mem0-api-key"
+
+# Initialize Mem0 client
+mem0 = MemoryClient()
+
+# Define memory tools for the agent
+@function_tool
+def search_memory(query: str, user_id: str = "default") -> str:
+ """Search through past conversations and memories"""
+ memories = mem0.search(query, user_id=user_id, limit=3)
+ if memories:
+ return "\n".join([f"- {mem['memory']}" for mem in memories])
+ return "No relevant memories found."
+
+@function_tool
+def save_memory(content: str, user_id: str = "default") -> str:
+ """Save important information to memory"""
+ mem0.add([{"role": "user", "content": content}], user_id=user_id)
+ return "Information saved to memory."
+
+# Create agent with memory capabilities
+agent = Agent(
+ name="Personal Assistant",
+ instructions="""You are a helpful personal assistant with memory capabilities.
+ Use the search_memory tool to recall past conversations and user preferences.
+ Use the save_memory tool to store important information about the user.
+ Always personalize your responses based on available memory.""",
+ tools=[search_memory, save_memory],
+ model="gpt-4o"
+)
+
+def chat_with_memory(user_input: str, user_id: str) -> str:
+ """
+ Handle user input with automatic memory integration.
+
+ Args:
+ user_input: The user's message
+ user_id: Unique identifier for the user
+
+ Returns:
+ The agent's response
+ """
+ # Run the agent (it will automatically use memory tools when needed)
+ result = Runner.run_sync(agent, user_input)
+
+ # Store the conversation in memory
+ conversation = [
+ {"role": "user", "content": user_input},
+ {"role": "assistant", "content": result.final_output}
+ ]
+ mem0.add(conversation, user_id=user_id)
+
+ return result.final_output
+
+# Example usage
+if __name__ == "__main__":
+ response = chat_with_memory(
+ "I love Italian food and I'm planning a trip to Rome next month",
+ user_id="alice"
+ )
+ print(response)
+```
+
+## Multi-Agent Workflow with Handoffs
+
+Create multiple specialized agents with proper handoffs and shared memory:
+
+```python
+from agents import Agent, Runner, handoffs, function_tool
+
+# Specialized agents
+travel_agent = Agent(
+ name="Travel Planner",
+ instructions="""You are a travel planning specialist. Use get_user_context to
+ understand the user's travel preferences and history before making recommendations.
+ After providing your response, use store_conversation to save important details.""",
+ tools=[search_memory, save_memory],
+ model="gpt-4o"
+)
+
+health_agent = Agent(
+ name="Health Advisor",
+ instructions="""You are a health and wellness advisor. Use get_user_context to
+ understand the user's health goals and dietary preferences.
+ After providing advice, use store_conversation to save relevant information.""",
+ tools=[search_memory, save_memory],
+ model="gpt-4o"
+)
+
+# Triage agent with handoffs
+triage_agent = Agent(
+ name="Personal Assistant",
+ instructions="""You are a helpful personal assistant that routes requests to specialists.
+ For travel-related questions (trips, hotels, flights, destinations), hand off to Travel Planner.
+ For health-related questions (fitness, diet, wellness, exercise), hand off to Health Advisor.
+ For general questions, you can handle them directly using available tools.""",
+ tools=[get_user_context],
+ handoffs=[travel_agent, health_agent],
+ model="gpt-4o"
+)
+
+def chat_with_handoffs(user_input: str, user_id: str = "default") -> str:
+ """
+ Handle user input with automatic agent handoffs and memory integration.
+
+ Args:
+ user_input: The user's message
+ user_id: Unique identifier for the user
+
+ Returns:
+ The agent's response
+ """
+ # Run the triage agent (it will automatically handoff when needed)
+ result = Runner.run_sync(triage_agent, user_input)
+
+ # Store the original conversation in memory
+ conversation = [
+ {"role": "user", "content": user_input},
+ {"role": "assistant", "content": result.final_output}
+ ]
+ mem0.add(conversation, user_id=user_id)
+
+ return result.final_output
+
+# Example usage
+response = chat_with_handoffs("Plan a healthy meal for my Italy trip", user_id="alex")
+print(response)
+```
+
+## Quick Start Chat Interface
+
+Simple interactive chat with memory:
+
+```python
+def interactive_chat():
+ """Interactive chat interface with memory and handoffs"""
+ user_id = input("Enter your user ID: ") or "demo_user"
+ print(f"Chat started for user: {user_id}")
+ print("Type 'quit' to exit\n")
+
+ while True:
+ user_input = input("You: ")
+ if user_input.lower() == 'quit':
+ break
+
+ response = chat_with_handoffs(user_input, user_id)
+ print(f"Assistant: {response}\n")
+
+if __name__ == "__main__":
+ interactive_chat()
+```
+
+## Key Features
+
+### 1. Automatic Memory Integration
+- **Tool-Based Memory**: Agents use function tools to search and save memories
+- **Conversation Storage**: All interactions are automatically stored
+- **Context Retrieval**: Agents can access relevant past conversations
+
+### 2. Multi-Agent Memory Sharing
+- **Shared Context**: Multiple agents access the same memory store
+- **Specialized Agents**: Create domain-specific agents with shared memory
+- **Seamless Handoffs**: Agents maintain context across handoffs
+
+### 3. Flexible Memory Operations
+- **Retrieve Capabilities**: Retrieve relevant memories from previous conversation
+- **User Segmentation**: Organize memories by user ID
+- **Memory Management**: Built-in tools for saving and retrieving information
+
+## Configuration Options
+
+Customize memory behavior:
+
+```python
+# Configure memory search
+memories = mem0.search(
+ query="travel preferences",
+ user_id="alex",
+ limit=5 # Number of memories to retrieve
+)
+
+# Add metadata to memories
+mem0.add(
+ messages=[{"role": "user", "content": "I prefer luxury hotels"}],
+ user_id="alex",
+ metadata={"category": "travel", "importance": "high"}
+)
+```
+
+## Help
+
+- [OpenAI Agents SDK Documentation](https://openai.github.io/openai-agents-python/)
+- [Mem0 Platform](https://app.mem0.ai/)
+
+
\ No newline at end of file