Add support for image dataset (#571)
Co-authored-by: Rupesh Bansal <rupeshbansal@Shankars-MacBook-Air.local>
This commit is contained in:
55
tests/models/test_clip_processor.py
Normal file
55
tests/models/test_clip_processor.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import tempfile
|
||||
import unittest
|
||||
import os
|
||||
import urllib
|
||||
from PIL import Image
|
||||
from embedchain.models.clip_processor import ClipProcessor
|
||||
|
||||
|
||||
class ClipProcessorTest(unittest.TestCase):
|
||||
|
||||
def test_load_model(self):
|
||||
# Test that the `load_model()` method loads the CLIP model and image preprocessing correctly.
|
||||
model, preprocess = ClipProcessor.load_model()
|
||||
|
||||
# Assert that the model is not None.
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
# Assert that the preprocess is not None.
|
||||
self.assertIsNotNone(preprocess)
|
||||
|
||||
def test_get_image_features(self):
|
||||
# Clone the image to a temporary folder.
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
urllib.request.urlretrieve(
|
||||
'https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg',
|
||||
"image.jpg")
|
||||
|
||||
image = Image.open("image.jpg")
|
||||
image.save(os.path.join(tmp_dir, "image.jpg"))
|
||||
|
||||
# Get the image features.
|
||||
model, preprocess = ClipProcessor.load_model()
|
||||
ClipProcessor.get_image_features(os.path.join(tmp_dir, "image.jpg"), model, preprocess)
|
||||
|
||||
# Delete the temporary file.
|
||||
os.remove(os.path.join(tmp_dir, "image.jpg"))
|
||||
|
||||
# Assert that the test passes.
|
||||
self.assertTrue(True)
|
||||
|
||||
def test_get_text_features(self):
|
||||
# Test that the `get_text_features()` method returns a list containing the text embedding.
|
||||
query = "This is a text query."
|
||||
model, preprocess = ClipProcessor.load_model()
|
||||
|
||||
text_features = ClipProcessor.get_text_features(query)
|
||||
|
||||
# Assert that the text embedding is not None.
|
||||
self.assertIsNotNone(text_features)
|
||||
|
||||
# Assert that the text embedding is a list of floats.
|
||||
self.assertIsInstance(text_features, list)
|
||||
|
||||
# Assert that the text embedding has the correct length.
|
||||
self.assertEqual(len(text_features), 512)
|
||||
Reference in New Issue
Block a user