Add GPT4Vision Image loader (#1089)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -108,65 +108,7 @@ class TestZillizDBCollection:
|
||||
|
||||
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
|
||||
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
|
||||
def test_query_with_skip_embedding(self, mock_connect, mock_client, mock_config):
|
||||
"""
|
||||
Test if the `ZillizVectorDB` instance is takes in the query with skip_embeddings.
|
||||
"""
|
||||
# Create an instance of ZillizVectorDB with mock config
|
||||
zilliz_db = ZillizVectorDB(config=mock_config)
|
||||
|
||||
# Add a 'collection' attribute to the ZillizVectorDB instance for testing
|
||||
zilliz_db.collection = Mock(is_empty=False) # Mock the 'collection' object
|
||||
|
||||
assert zilliz_db.client == mock_client()
|
||||
|
||||
# Mock the MilvusClient search method
|
||||
with patch.object(zilliz_db.client, "search") as mock_search:
|
||||
# Mock the search result
|
||||
mock_search.return_value = [
|
||||
[
|
||||
{
|
||||
"distance": 0.5,
|
||||
"entity": {"text": "result_doc", "url": "url_1", "doc_id": "doc_id_1", "embeddings": [1, 2, 3]},
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
# Call the query method with skip_embedding=True
|
||||
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=True)
|
||||
|
||||
# Assert that MilvusClient.search was called with the correct parameters
|
||||
mock_search.assert_called_with(
|
||||
collection_name=mock_config.collection_name,
|
||||
data=["query_text"],
|
||||
limit=1,
|
||||
output_fields=["*"],
|
||||
)
|
||||
|
||||
# Assert that the query result matches the expected result
|
||||
assert query_result == ["result_doc"]
|
||||
|
||||
query_result_with_citations = zilliz_db.query(
|
||||
input_query=["query_text"], n_results=1, where={}, skip_embedding=True, citations=True
|
||||
)
|
||||
|
||||
mock_search.assert_called_with(
|
||||
collection_name=mock_config.collection_name,
|
||||
data=["query_text"],
|
||||
limit=1,
|
||||
output_fields=["*"],
|
||||
)
|
||||
|
||||
assert query_result_with_citations == [
|
||||
("result_doc", {"text": "result_doc", "url": "url_1", "doc_id": "doc_id_1", "score": 0.5})
|
||||
]
|
||||
|
||||
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
|
||||
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
|
||||
def test_query_without_skip_embedding(self, mock_connect, mock_client, mock_embedder, mock_config):
|
||||
"""
|
||||
Test if the `ZillizVectorDB` instance is takes in the query without skip_embeddings.
|
||||
"""
|
||||
def test_query(self, mock_connect, mock_client, mock_embedder, mock_config):
|
||||
# Create an instance of ZillizVectorDB with mock config
|
||||
zilliz_db = ZillizVectorDB(config=mock_config)
|
||||
|
||||
@@ -193,8 +135,7 @@ class TestZillizDBCollection:
|
||||
]
|
||||
]
|
||||
|
||||
# Call the query method with skip_embedding=False
|
||||
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=False)
|
||||
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={})
|
||||
|
||||
# Assert that MilvusClient.search was called with the correct parameters
|
||||
mock_search.assert_called_with(
|
||||
@@ -208,7 +149,7 @@ class TestZillizDBCollection:
|
||||
assert query_result == ["result_doc"]
|
||||
|
||||
query_result_with_citations = zilliz_db.query(
|
||||
input_query=["query_text"], n_results=1, where={}, skip_embedding=False, citations=True
|
||||
input_query=["query_text"], n_results=1, where={}, citations=True
|
||||
)
|
||||
|
||||
mock_search.assert_called_with(
|
||||
|
||||
Reference in New Issue
Block a user