Add GPT4Vision Image loader (#1089)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -12,6 +12,11 @@ from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.vectordb.qdrant import QdrantDB
|
||||
|
||||
|
||||
def mock_embedding_fn(texts: list[str]) -> list[list[float]]:
|
||||
"""A mock embedding function."""
|
||||
return [[1, 2, 3], [4, 5, 6]]
|
||||
|
||||
|
||||
class TestQdrantDB(unittest.TestCase):
|
||||
TEST_UUIDS = ["abc", "def", "ghi"]
|
||||
|
||||
@@ -25,6 +30,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
@@ -42,6 +48,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
@@ -61,6 +68,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
@@ -71,8 +79,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
documents = ["This is a test document.", "This is another test document."]
|
||||
metadatas = [{}, {}]
|
||||
ids = ["123", "456"]
|
||||
skip_embedding = True
|
||||
db.add(embeddings, documents, metadatas, ids, skip_embedding)
|
||||
db.add(embeddings, documents, metadatas, ids)
|
||||
qdrant_client_mock.return_value.upsert.assert_called_once_with(
|
||||
collection_name="embedchain-store-1526",
|
||||
points=Batch(
|
||||
@@ -98,6 +105,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
@@ -105,7 +113,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
App(config=app_config, db=db, embedding_model=embedder)
|
||||
|
||||
# Query for the document.
|
||||
db.query(input_query=["This is a test document."], n_results=1, where={"doc_id": "123"}, skip_embedding=True)
|
||||
db.query(input_query=["This is a test document."], n_results=1, where={"doc_id": "123"})
|
||||
|
||||
qdrant_client_mock.return_value.search.assert_called_once_with(
|
||||
collection_name="embedchain-store-1526",
|
||||
@@ -119,7 +127,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
)
|
||||
]
|
||||
),
|
||||
query_vector=["This is a test document."],
|
||||
query_vector=[1, 2, 3],
|
||||
limit=1,
|
||||
)
|
||||
|
||||
@@ -128,6 +136,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
@@ -142,6 +151,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
# Set the embedder
|
||||
embedder = BaseEmbedder()
|
||||
embedder.set_vector_dimension(1526)
|
||||
embedder.set_embedding_fn(mock_embedding_fn)
|
||||
|
||||
# Create a Qdrant instance
|
||||
db = QdrantDB()
|
||||
|
||||
Reference in New Issue
Block a user