Add GPT4Vision Image loader (#1089)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -35,7 +35,7 @@ class TestEsDB(unittest.TestCase):
|
||||
ids = ["doc_1", "doc_2"]
|
||||
|
||||
# Add the data to the database.
|
||||
self.db.add(embeddings, documents, metadatas, ids, skip_embedding=False)
|
||||
self.db.add(embeddings, documents, metadatas, ids)
|
||||
|
||||
search_response = {
|
||||
"hits": {
|
||||
@@ -60,63 +60,17 @@ class TestEsDB(unittest.TestCase):
|
||||
|
||||
# Query the database for the documents that are most similar to the query "This is a document".
|
||||
query = ["This is a document"]
|
||||
results_without_citations = self.db.query(query, n_results=2, where={}, skip_embedding=False)
|
||||
results_without_citations = self.db.query(query, n_results=2, where={})
|
||||
expected_results_without_citations = ["This is a document.", "This is another document."]
|
||||
self.assertEqual(results_without_citations, expected_results_without_citations)
|
||||
|
||||
results_with_citations = self.db.query(query, n_results=2, where={}, skip_embedding=False, citations=True)
|
||||
results_with_citations = self.db.query(query, n_results=2, where={}, citations=True)
|
||||
expected_results_with_citations = [
|
||||
("This is a document.", {"url": "url_1", "doc_id": "doc_id_1", "score": 0.9}),
|
||||
("This is another document.", {"url": "url_2", "doc_id": "doc_id_2", "score": 0.8}),
|
||||
]
|
||||
self.assertEqual(results_with_citations, expected_results_with_citations)
|
||||
|
||||
@patch("embedchain.vectordb.elasticsearch.Elasticsearch")
|
||||
def test_query_with_skip_embedding(self, mock_client):
|
||||
self.db = ElasticsearchDB(config=ElasticsearchDBConfig(es_url="https://localhost:9200"))
|
||||
app_config = AppConfig(collect_metrics=False)
|
||||
self.app = App(config=app_config, db=self.db)
|
||||
|
||||
# Assert that the Elasticsearch client is stored in the ElasticsearchDB class.
|
||||
self.assertEqual(self.db.client, mock_client.return_value)
|
||||
|
||||
# Create some dummy data.
|
||||
embeddings = [[1, 2, 3], [4, 5, 6]]
|
||||
documents = ["This is a document.", "This is another document."]
|
||||
metadatas = [{"url": "url_1", "doc_id": "doc_id_1"}, {"url": "url_2", "doc_id": "doc_id_2"}]
|
||||
ids = ["doc_1", "doc_2"]
|
||||
|
||||
# Add the data to the database.
|
||||
self.db.add(embeddings, documents, metadatas, ids, skip_embedding=True)
|
||||
|
||||
search_response = {
|
||||
"hits": {
|
||||
"hits": [
|
||||
{
|
||||
"_source": {"text": "This is a document.", "metadata": {"url": "url_1", "doc_id": "doc_id_1"}},
|
||||
"_score": 0.9,
|
||||
},
|
||||
{
|
||||
"_source": {
|
||||
"text": "This is another document.",
|
||||
"metadata": {"url": "url_2", "doc_id": "doc_id_2"},
|
||||
},
|
||||
"_score": 0.8,
|
||||
},
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
# Configure the mock client to return the mocked response.
|
||||
mock_client.return_value.search.return_value = search_response
|
||||
|
||||
# Query the database for the documents that are most similar to the query "This is a document".
|
||||
query = ["This is a document"]
|
||||
results = self.db.query(query, n_results=2, where={}, skip_embedding=True)
|
||||
|
||||
# Assert that the results are correct.
|
||||
self.assertEqual(results, ["This is a document.", "This is another document."])
|
||||
|
||||
def test_init_without_url(self):
|
||||
# Make sure it's not loaded from env
|
||||
try:
|
||||
|
||||
Reference in New Issue
Block a user