[Feature] add google ai embedder (#1019)
Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
@@ -146,21 +146,7 @@ class BaseLlm(JSONSerializable):
|
||||
logging.info(f"Access search to get answers for {input_query}")
|
||||
return search.run(input_query)
|
||||
|
||||
def _stream_query_response(self, answer: Any) -> Generator[Any, Any, None]:
|
||||
"""Generator to be used as streaming response
|
||||
|
||||
:param answer: Answer chunk from llm
|
||||
:type answer: Any
|
||||
:yield: Answer chunk from llm
|
||||
:rtype: Generator[Any, Any, None]
|
||||
"""
|
||||
streamed_answer = ""
|
||||
for chunk in answer:
|
||||
streamed_answer = streamed_answer + chunk
|
||||
yield chunk
|
||||
logging.info(f"Answer: {streamed_answer}")
|
||||
|
||||
def _stream_chat_response(self, answer: Any) -> Generator[Any, Any, None]:
|
||||
def _stream_response(self, answer: Any) -> Generator[Any, Any, None]:
|
||||
"""Generator to be used as streaming response
|
||||
|
||||
:param answer: Answer chunk from llm
|
||||
@@ -220,7 +206,7 @@ class BaseLlm(JSONSerializable):
|
||||
logging.info(f"Answer: {answer}")
|
||||
return answer
|
||||
else:
|
||||
return self._stream_query_response(answer)
|
||||
return self._stream_response(answer)
|
||||
finally:
|
||||
if config:
|
||||
# Restore previous config
|
||||
@@ -269,14 +255,12 @@ class BaseLlm(JSONSerializable):
|
||||
return prompt
|
||||
|
||||
answer = self.get_answer_from_llm(prompt)
|
||||
|
||||
if isinstance(answer, str):
|
||||
logging.info(f"Answer: {answer}")
|
||||
|
||||
return answer
|
||||
else:
|
||||
# this is a streamed response and needs to be handled differently.
|
||||
return self._stream_chat_response(answer)
|
||||
return self._stream_response(answer)
|
||||
finally:
|
||||
if config:
|
||||
# Restore previous config
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional
|
||||
from typing import Any, Generator, Optional, Union
|
||||
|
||||
import google.generativeai as genai
|
||||
|
||||
@@ -30,22 +30,22 @@ class GoogleLlm(BaseLlm):
|
||||
def get_llm_model_answer(self, prompt):
|
||||
if self.config.system_prompt:
|
||||
raise ValueError("GoogleLlm does not support `system_prompt`")
|
||||
return GoogleLlm._get_answer(prompt, self.config)
|
||||
response = self._get_answer(prompt)
|
||||
return response
|
||||
|
||||
@staticmethod
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig):
|
||||
model_name = config.model or "gemini-pro"
|
||||
def _get_answer(self, prompt: str) -> Union[str, Generator[Any, Any, None]]:
|
||||
model_name = self.config.model or "gemini-pro"
|
||||
logging.info(f"Using Google LLM model: {model_name}")
|
||||
model = genai.GenerativeModel(model_name=model_name)
|
||||
|
||||
generation_config_params = {
|
||||
"candidate_count": 1,
|
||||
"max_output_tokens": config.max_tokens,
|
||||
"temperature": config.temperature or 0.5,
|
||||
"max_output_tokens": self.config.max_tokens,
|
||||
"temperature": self.config.temperature or 0.5,
|
||||
}
|
||||
|
||||
if config.top_p >= 0.0 and config.top_p <= 1.0:
|
||||
generation_config_params["top_p"] = config.top_p
|
||||
if self.config.top_p >= 0.0 and self.config.top_p <= 1.0:
|
||||
generation_config_params["top_p"] = self.config.top_p
|
||||
else:
|
||||
raise ValueError("`top_p` must be > 0.0 and < 1.0")
|
||||
|
||||
@@ -54,11 +54,11 @@ class GoogleLlm(BaseLlm):
|
||||
response = model.generate_content(
|
||||
prompt,
|
||||
generation_config=generation_config,
|
||||
stream=config.stream,
|
||||
stream=self.config.stream,
|
||||
)
|
||||
|
||||
if config.stream:
|
||||
for chunk in response:
|
||||
yield chunk.text
|
||||
if self.config.stream:
|
||||
# TODO: Implement streaming
|
||||
response.resolve()
|
||||
return response.text
|
||||
else:
|
||||
return response.text
|
||||
|
||||
Reference in New Issue
Block a user